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ABSTRACT

It is well known that an v—th order Volterra filter of
one dimensional signal can be evaluated by an appropriate
v-D linear convolution. This work describes new superfast
algorithm for Volterra filtering. New approach is based on
the superfast discrete Radon and Nussbaumer Polynomial
Transforms.

1. INTRODUCTION

The study of nonlinear operators y(t) = H{z(t)} was started
by Volterra [1] who investigated analytic operators and in-
troduced the representation

y(t) = / ha(ts — 7 )e(r))dr+

+/ /hz(tl —T1,t2—T2)$(T1)$(T2)d7'1d7'2+ (1)

+...+

[o%e} [o%e}

+/.../h,,(t1—Tl,...,t,,—T,,)x(ﬁ)---a:(T,,)d7'1~~~d7',,,

where v = 1,2,..., z(t) and y(t) are the input and output
respectively of the system at time ¢ and hi(t1 — 71,. .. ,t» —
7,) is the v—th order Volterra kernel. Equation (1) is also
known as a Volterra series. Such a functional representation
characterises a system as a mapping between its input and
output spaces. Another way of expressing it is

y(t) = Hq [u(t)] + H» [u(t)] +...+H, [u(t)] +...= (2

=y +yP )+ )+,

in which y”’ = H, [x(t)] =
= / o hy(t1 — 11y .ty — 1)x(11)- - -x(1)dm- - -dT.

®3)

The Volterra series has been successfully applied to a

wide variety of engineering problems such as modeling non-

linear communication channels and biological systems, lin-
earizing audio speakers, and acoustic noise cancellation.
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If the product of expression (3) is interpreted as a v—

D signal z(71,72,...,7v) := z(711)x(72) - - - ©(7v), expression
(3) can be seen as a multidimensional convolution evaluated
on the main diagonal t =t =...=t, :

y W (ty,ta, ... 1) =

t=ty=to=...=t,

oo oo

— /.../Y(fl,...,f,,)ezwj(t1f1+"'+t"f")df1"'dfu =

L (4)

— /.../Y(fl,...,f,,)ez"j(f1+f2+"'+f”)tdf1-"dfu,

where Y(f17 e '7fl/) = HV(f17 s 7fV)X(f1) o X(f"):
H,(f1,...,f,) and X(f) are the Fourier transforms of y(¢),
hy(t1,...,t,) and z(t), respectively.

This interpretation suggest the use of FFT based schemes,
also called fast convolution schemes, for the computation
of (1). These methods are the most efficient techniques
for evaluating linear convolutions. Their application to
Volterra filtering in principle is rather attractive because
the direct computation of (3) requires a number of opera-
tions per output point of order of N”*!, while the computa-
tion of (2) via fast convolution requires a vN*~* 1-D Fast
Fourier Transforms (FFT’s) or vN” log N arithmetic oper-
ations, where IV is the number of samples along one dimen-
sion. This paper describes a superfast new v—D Fast Fourier
Transform. It requires fewer 1-D FFT’s than the classical
separable radix-2 FFT-type approach. The method uti-
lizes a decomposition of the v—D Fourier transform into a
product of (original) »—D Discrete Radon Transform and a
minimal family parallel/independ 1-D Fourier Transforms.
In this case our approach leads to decrease of multiplica-
tive complexity by factor of v compared to the classical
row/column separable approach.

Note that none of the multidimensional FFT algorithms
for this application reported in literature can at once cal-
culate the signal from its Fourier spectrum on the main
diagonal. Only composition Radon transform and a collec-
tion parallel/independed 1-D FFT can calculate signal on
this diagonal.

In order to develop a superfast nonlinear convolution
we need the Radon transform (RT). This transform and its
ill-conditioned inverse were first formulated by J. Radon



in 1917. Currently, the RT is used in a wide variety of
applications including tomography, ultrasound, optics, and
geophysics, to name a few. In this paper, we introduce
new direct and inverse DRT and show that they admit fast
computation by the fast Nussbaumer Polynomial Transform
(NPT) [6].

2. MULTIDIMENSIONAL RADON AND
FOURIER TRANSFORMS

Let R” be a v—D space consisting of column vectors x :=
(x1,Z2,...,2,)" = |x) with components z1,z2, ..., T, over
the field of real numbers in orthonormal basis {e; };—,, where
7*7 denotes transpose. Let R*” be the dual space consisting
of row vectors w := (w1, w2, ... ... ,wy) = (w| in the dual basis
S

Definition 1 The unitary operators F, and F, ! acting by
rules

Fo{f(x)} M ix = Fw),  (5)

1
~ e / f6oe

FoHF W)} T dw = f(x) (6)

1
= \/WR[ F(w)e

are called direct and inverse v—D Fourier transforms (FT),

where
14

(x|w) := Z TiWs,
i=1

dx :=dzx1...dr,, dw:=dwi...dwy.

Denote by ©,_1 x R the space of all hyperplanes m,(p) :
(€,x) =p, where ¢ € ,_1,p€ Rt and ©,_; is (v — 1)-D
unit sphere in R*”.

Definition 2 The Radon transforms of the functions f(x)

and F(w) are the functions f({,p) and ﬁ(ﬁ,p), respectively,
onY,_1 xRt given by formulas

R Af(x)} = f(£,p)=/f(X)5(p—(£|X)) dx, (7
v

R (F(w)} = Fe,p) = / F@)Sp— (€lw) dw,  (8)
J

ie. f(f,p)and I/*"\(f,p) are equal to integrals of the function
f(x) and F(w) along hyperplanes 7, (p).

Radon transform is closely related with v—D Fourier
Transform

flx)= /F(w)ej%(”lx)dw.

Rev
Indeed, if x = |x|¢° = ¢£°, where £&° € 3,1 C R, t = |x|,
then to calculate f(x) = f(t£°), one can first make in-

tegration by hyperplane (w|€°) = p, and then the inte-
grate 1-D Fourier transforms by p (for every fixed £°) :

fx) = 1(t€°) =

=F {F(w)} = / F(w)e2™@IE gy =
RV

400
= / </ F(w)dw) e P dp =
- (wlg)=p

400

= / F(e°,p)e’>™Pdp .= Fy* {ﬁ(s",p)} )
where B ﬁ(ﬁo,p) =
= / F(w)dw = /F(w)é((w|§°) —p)dw.
(w|§°)=p RY

It means that the »~-D FT F, ! is a composition of the
Radon transform $, and of a family 1-D FT

Fol= {5‘)?;1 & e 2,_1} OR,.

The cardinality of 1-D Fourier transforms from this the
family {§°f;1 | €€
sphere (set) ¥,_1. This cardinality is finite in discrete case
and generate minimal complexity v—D FFT.

Consider ¥,_; x RT as a subset of R**'. Tt is clear
that it forms a cylinder like surface with p as the axis of the
cylinder. We can consider ﬁ(ﬁo,p) as defined on this sur-
face. Consider the f(t£°) as the inverse Fourier transform
of the spectrum F(w). Now t£° is a point on the ray gen-
erated by the unit vector £° and is obtained from ﬁ(ﬁo,p)
by 1-D Fourier transform of function ﬁ(fo,p) by variable
p. Since rays t£° generated by £° € £,_; cover signal do-
main R” then all values v—D signal can be obtained. This
connection is called Central Slice Theorem.

} equal to the cardinality of the

Theorem 1 1-D Fourier transform '50.7-'{1 of projection

ﬁ(fo, p) along the ray t£° is the central slice of v—dimensional
signal f(t£%).

3. RADON TRANSFORM AND VOLTERRA
SERIES

Return to the expression (4) for v = 2

y(2)(t1,t2):y(t):/ Y& (f1, fo)e*™ 1202 gg, gf,

(10)
Introduce 2-D ”time” (1, t2)-space R? spanned by two unit
"time” vectors ej, es. Arbitrary 2-D unit vector t0 = t?el +
tgez € X, will be called arrow of the time (in terms of the
physic & phylosophy). Let t = (t1,t2) be an arbitrary 2-D

time vector. Then t = [t| (ltt—ll, ‘tt—z‘) = t,t°, where t° :=

(ltt—ll, ";—2‘) , ts := |t| is the eigentime lying on t°—th arrow of

time. Classical physical (calendar) time ¢, lie on the main
diagonal t; = t2, i.e.on the ray t = \’5/55(1,1) = tpn(1,1),
where t,5, =t /2.

Definition 3 The arrow of time t,y, is called arrow of phys-

ical (calendar) time and all the other t° # t), are called
arrows ghost time.




Represent expression (10) as

o /
—00

oo o0

— / /Y(Z)(fl,f2)627rj(t1f1+t2f2)df1df2.

Let t = |t|to = tst°, where t° € X, then to calculate
y@ (t5t°), one can first make integration by line (t°|f) =
f = const, and then integrate 1-D Fourier transform by f
(for every fixed t-th arrow of time):

Y ) 27'rj(t|f>dfldf2 —

é\g

Y (tt°) ://Y(Q)(fhf2)e27rjts(t0\f)dfldf2 _

/ / YO (f1, f2)dfadfs | €27 df =

(tO|f)

Y (0, fre*mit! gy,

Il
é\g

YO, = [ YO, fo)dfrdf> =

(telf)=F

where

= / YO (1, £2)0(f — 15 fr + t3 f2)dfrdf>.
R2

Obviously the physical output of quadratic filter lies on the
main diagonal t; = t2, i.e. on the arrow of the physical time

oh y?(t) = y(”(tpht;h) =

oo
y (Vatt,) = / PO, Fe?mitddf,

where )//\'(2)(t"7 f):=

=/Y(2)(f1,f2)5 (f ff1+ jﬁf) dfudfs.

R?2

Definition 4 The output of quadratic filter y® (¢) =
y® (V2tt),) lying on the arrow of the physical time t2,, is

called physical output and all the other outputs y® (\/_t t9),
t° # tp), are called ghost outputs or t°th—outputs.

Definition 5 A some k—collection of the t°th—outputs of
quadratic filter VGA(t) :=

9(2) (tstg)

is called Volterragram of the 2-th order.

The idea using of 2-D Radon Transform for calcula-
tion of output quadratic filter can be generalized further.
Return to the expression (4). Introduce v-D ”time” t :=
(t1,...,t,)-space R”. Denote by ¥,_; € R” unit sphere.
Arbitrary unit vector (t7,...,t0) € ¥,_1 is called an arrow

of the time. For an arbitrary v-D vector t := (t1,...,t,)
we have t := |t|t° = t,t°, where ¢, =: |t| is eigentime lying
on the arrow of the time t° := (%, ceey t—\/”; = (t3,...,t2).

Physical time ¢, lies on the main diagonal t; =t =... =

t,, i.e. on the ray t = \’5/5;(1,...,1) = tpn(1,...,1), where
tpn :=ts/\/V.
Represent (4) as  y™(t) =y (¢1,...,t,) =
o) o0
= /.../Y(")(fl,...,f,,)ez”j“'f)dfl---df,,:

fu)e27rj(t1f1+---+tnufu)dfl e df,.

J ]
— 00 — 00

Let t = [t|to = t:t°, where t° € =, 1, then calculate
y I (tr, .. 1) =y () = y®(t.t°), one can first make
integration by line (t°|f) = f = const, and then integrate
1-D Fourier transform by f (for every fixed t°~th arrow of
the time):

o)

oo
y " (t:t°) / /Y(")(fl,...

,fl/)€27rjts(t0‘f)df1. df, =

/ /Y(" o t)dfy e df, | 2T gF =
e} (to\f)
= / Y0, et df,
where Y (t°, f) := f YO (fr, ., fo)dfy - -df, =
(to|f)y=

JIDO(f =t f1 + -+t fo)dfr - - - dfs.

:/Y(")(fl,...
RV

Again the physical output of quadratic filter lies on the
main diagonal t; =t = ... =t,, i.e. on the arrow of the
physical time t2, : y*)(t) =y (t,n) =

oo
O (D) = / PO, Herite! df,

where i/\'(”)(to,f) =
:R[Y(U)(fl’ S f)8 <f _ Lﬂ) dfy - - df,.



Deﬁnition 6 The output of v—th filter y*)(\/vt, tgh) =
y)(t) lying on the arrow of the physical time t°, o is called

physical output and all the other outputs y™ (v/wtst°), t° #
tyy, are called ghost outputs or t°th—outputs.

Definition 7 A k—collection of the t°th—outputs v—th or-
der VG®(t) :=

y " (t:t9)
_ | y™(tst9)

y(”)(tsti)
is called Volterragram of v—th order.

According to (2) we have

y(tsto) = Hy[u(t)] + Ha[u(t)] + ... + H [u(t)] +... =
— ]OY(I)(f)e%rjtsfdf + /Oo?(2)(t07 f)e27rjtsfdf+
- ot
+ / YOO, fle? bl af + ... =
= 7 Y (80, £’ df,
where -

Y (¢

Z Y(")

is the Fourier spectrum of output signal.

Definition 8 The output of Volterra filter y(tpnt,,) = y(t)
lying on the arrow of the physical time t3,, is called physical
output and all other outputs

y” (t:t°) = / V@0, feritLay,

are called ghost outputs or t°th—outputs.

Definition 9 A k—collection of the t°th—outputs of Volterra
filter VG, (t) =

y(tst})
is called full Volterragram of Volterra filter.

A Volterragramm gives a full representation about all
possibility output (physical and ghost) of a Volterra filter
with different points of view (in different time arrow). In
philosophy such approach is called geschtalt phylosophy.

4. DISCRETE VOLTERRA FILTERS

Discrete time version of the Volterra series is

= hi(n—i)a(i)+

N—-1N-1
+ 3 he(n =i, n = i2)z(in)w(iz)+
i1=0ip=0
+...+
N-1 N-—1
+ 3 Y he(n—in, e m—i)a(in) - alin) + - (11)
i1 =0 i, =0
where hi(i), ha(i1,32), hy(31,%2,...,0v), ... are the linear,

quadratic, cubic etc. filter weights or kernels respectively
and N denotes the filter length. Every term of Volterra
series (11) is the output of a homogeneous and causal v—th
order Volterra filter
N-1
Y S

i1=0 i,=0

o =iy )z (i) -

By using discrete Fourier transform, we can write:
N-1

N-1
y =3 S vk,

0 0

2mj
)e® (k1+...+k',,)n7

where H (ky,... k), X(k) and Y (ky, ... k) =
H"(ki,...,k,)X (k1) --- X(k,), are the Fourier transform
of hy (i1, ...,4,), (i) and y*(n), respectively.

If the product of expression (11) is interpreted as a v—
D discrete signal z(é1,...,%,) = z(i1)---z(4,), expression
(11) can be seen as a v—D convolution evaluated on the
main diagonal n =n1=...=mn, :

7”") =
n=n|=...=n,

y(")(nl,...

N-1 N-1

=D YWy, k)T R BN (19
k1=0 ky,=0

which can be implemented efficiently by using fast Radon

and Fourier transforms.

5. DISCRETE FOURIER AND RADON
TRANSFORMS

Let D"(N) = Znei1 + Znez + ... + Zne, be v-D a dis-
crete paralellepiped. Its elements are column vectors i :=
(i1,...,%,)" = |i), where i1,...,i, € Zn. Let D*”(N) be a
dual paralellepiped consisting of row vectors k := (k1, ka2, . . .
<k|7 kl,...,k,, € Zn.

Definition 10 The unitary operators F, and F,*
by rules

acting

FAIG) fo eTF T = F(K),

ieDv

akV)



) 1 Gl
FEW) = 3 Fge™ ¥ =f()
keDYY
are called direct and inverse discrete v—D Fourier trans-

forms (DFT), where (i|k) := )" isks.
For convenience we omit in the following the normalization
factor (constant) 1/v/N.

Let {a°} € D*”(N) be minimal such vector set that the
rays {aa® | =1,2,..., N—1} cover the whole parallelepiped
D*(N) : {aa® | a = 1,2,...,N — 1}. Then we can write
that F(aa®) =

q—1
= Y s@e NI =N N () | R,
iepv p=0 \<al|i>=p
or
! ~ 2jmap
F(aa®) =Y fla®p)e ~ ", (13)
p=0
where

fle*,p) =R AfO} = D f(i).
<a®li>=p
Definition 11 The function f(a°,p) which is equal to the
sum of values of the signal f(i) on the discrete hyperplane
(a®li) = p is called Discrete Radon Transform (DRT) of

ONGE

The expression (13) means that v—~D DFT F, is a com-
position of DRT R, and a set 1-D DFT’s. The total number
of 1-D DFT is equal to the power of the set {a°}. Every
1-D DFT acts along the ray {aca’| a = 1,2,...,L(a°)},
where L(a°) is the length of the ray. It is necessary to find
such {a’} that would give DRT with minimum computa-
tional complexity. Note that the classical “rown/column
separable ” v-D DFT is reduced to vN”~! 1-D DFT’s of
the lenght N.

Theorem 2 [9] If N = q is a prime integer the total num-
ber of rays RAY (v, q) that cover D*”(q) is equal to

RAY(v,q) = (¢" = 1)/(¢—1) ~q" ",

and each of rays has length L(n,q) = ¢. All rays spanned
by the following vectors of set {a°}:

o {a°} =(k1,...,kv_2,kv_1,1),
o {a®} 7 i=(ki,...,ku_2,1,0),

o ... ,

e {a°} :=(k1,1,0...,0),

e {a°} :=(1,0,...,0),

where k; € Zg,1=1,2,...,n.

First, this means that v-D FT is realized not as vg”™*
1-D FT, but with help only ¢! 1-D FT, second, this mean
that v—th order discrete Volterra filter have (¢"—1)/(q—
1) arrows of the time and its Volterragram contain (¢” —
1)/(q — 1) terms.

The total complexity of the proposed algorithm [9] for
computing v- -D DRT is

Ad(R.(q)) = v¢" *Ad(N1(9)), Mu(R. () = 0
and for computing v-D DFT is

Ad(F, (@) = (v +1)¢" " Ad(Fi(q)),

v—1

_g¢ -1
Mu(F,(q)) = ﬁMu(ﬂ (@),

where Ad(N1(q)) = ¢Ad(Fi(qg)), Mu(Ni(q)) = 0; Ad(Ni(q)),

Mu(Ni(q)) and Ad(Fi(q)), Mu(Fi(q)) are additive and
multiplicative complexities 1-D g-points fast NPT N7(q)
and DFT Fi(q), respectively.

6. CONCLUSIONS

Volterra non-linear convolution consists of a collection of
multidimensional convolutions. Every v—D convolution (12)
can be evaluated by an classical fast convolution algorithm,
which requires a vN” /(N + 1) 1-D FFT’s. Our method re-
quires one v—D Radon transform (Nussbaumer transform)
and one (!) Fourier transform, for calculating physical out-
put of Volterra filter and one »—D Radon transform and
NV~ Fourier transforms, for calculating physical and all
ghost outputs of Volterra filter, that decreasing the com-
puter complexity by the factor of v (where v is the order
Volterra filter) compared to the classical row/column sepa-
rable FFT approach.
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