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ABSTRACT

It is well known that an �{th order Volterra �lter of
one dimensional signal can be evaluated by an appropriate
�{D linear convolution. This work describes new superfast
algorithm for Volterra �ltering. New approach is based on
the superfast discrete Radon and Nussbaumer Polynomial
Transforms.

1. INTRODUCTION

The study of nonlinear operators y(t) = Hfx(t)gwas started
by Volterra [1] who investigated analytic operators and in-
troduced the representation

y(t) =

1Z
�1

h1(t1 � �1)x(�1))d�1+

+

1Z
�1

1Z
�1

h2(t1 � �1; t2 � �2)x(�1)x(�2)d�1d�2+ (1)

+::::+

+

1Z
�1

: : :

1Z
�1

h�(t1 � �1;: : : ;t� � ��)x(�1)� � �x(��)d�1� � �d�� ;

where � = 1; 2; : : : ; x(t) and y(t) are the input and output
respectively of the system at time t and h1(t1 � �1;: : : ;t� �
��) is the �{th order Volterra kernel. Equation (1) is also
known as a Volterra series. Such a functional representation
characterises a system as a mapping between its input and
output spaces. Another way of expressing it is

y(t) = H1

�
u(t)

�
+H2

�
u(t)

�
+ : : :+H�

�
u(t)

�
+ : : : = (2)

= y(1)(t) + y(2)(t) + : : :+ y(�)(t) + : : : ;

in which y� := H�

�
x(t)

�
=

=

1Z
�1

: : :

1Z
�1

h�(t1 � �1;: : : ;t� � ��)x(�1)� � �x(��)d�1� � �d�� :

(3)
The Volterra series has been successfully applied to a

wide variety of engineering problems such as modeling non-
linear communication channels and biological systems, lin-
earizing audio speakers, and acoustic noise cancellation.

If the product of expression (3) is interpreted as a �{
D signal x(�1; �2; : : : ; ��) := x(�1)x(�2) � � �x(��); expression
(3) can be seen as a multidimensional convolution evaluated
on the main diagonal t = t1= : : := t� :

y(�)(t1; t2; : : : ; t�)
���
t=t1=t2=:::=t�

=

=

1Z
�1

: : :

1Z
�1

Y (f1; : : : ; f�)e
2�j(t1f1+:::+t�f�)df1 � � � df� =

(4)

=

1Z
�1

: : :

1Z
�1

Y (f1; : : : ; f�)e
2�j(f1+f2+:::+f�)tdf1 � � � df� ;

where Y (f1; : : : ; f�) := H�(f1; : : : ; f�)X(f1) � � �X(f�);
H�(f1; : : : ; f�) and X(f) are the Fourier transforms of y(t);
h�(t1;: : : ;t�) and x(t); respectively.

This interpretation suggest the use of FFT based schemes,
also called fast convolution schemes, for the computation
of (1). These methods are the most e�cient techniques
for evaluating linear convolutions. Their application to
Volterra �ltering in principle is rather attractive because
the direct computation of (3) requires a number of opera-
tions per output point of order of N�+1; while the computa-
tion of (2) via fast convolution requires a �N��1 1{D Fast
Fourier Transforms (FFT's) or �N� logN arithmetic oper-
ations, where N is the number of samples along one dimen-
sion. This paper describes a superfast new �{D Fast Fourier
Transform. It requires fewer 1{D FFT's than the classical
separable radix{2 FFT{type approach. The method uti-
lizes a decomposition of the �{D Fourier transform into a
product of (original) �{D Discrete Radon Transform and a
minimal family parallel/independ 1{D Fourier Transforms.
In this case our approach leads to decrease of multiplica-
tive complexity by factor of � compared to the classical
row/column separable approach.

Note that none of the multidimensional FFT algorithms
for this application reported in literature can at once cal-
culate the signal from its Fourier spectrum on the main
diagonal. Only composition Radon transform and a collec-
tion parallel/independed 1{D FFT can calculate signal on
this diagonal.

In order to develop a superfast nonlinear convolution
we need the Radon transform (RT). This transform and its
ill{conditioned inverse were �rst formulated by J. Radon



in 1917. Currently, the RT is used in a wide variety of
applications including tomography, ultrasound, optics, and
geophysics, to name a few. In this paper, we introduce
new direct and inverse DRT and show that they admit fast
computation by the fast Nussbaumer Polynomial Transform
(NPT) [6].

2. MULTIDIMENSIONAL RADON AND

FOURIER TRANSFORMS

Let R� be a �{D space consisting of column vectors x :=
(x1; x2; : : : ; x�)

� = jxi with components x1; x2; : : : ; x� over
the �eld of real numbers in orthonormal basis feig�i=1; where
"*" denotes transpose. Let R�� be the dual space consisting
of row vectors ! := (!1; !2; ::: :::; !�) = h!j in the dual basis
~e�i=1:

De�nition 1 The unitary operators F� and F�1
� acting by

rules

F�ff(x)g := 1p
(2�)�

Z
R�

f(x)ej2�h!jxidx = F (!); (5)

F�1
� fF (!)g := 1p

(2�)�

Z
R��

F (!)e�j2�h!jxid! = f(x) (6)

are called direct and inverse �{D Fourier transforms (FT),
where

hxj!i :=
�X
i=1

xi!i;

dx := dx1 : : : dx� ; d! := d!1 : : : d!� :

Denote by ���1 �R
+ the space of all hyperplanes ��(p) :

h�;xi = p; where � 2 ���1; p 2 R+ and ���1 is (� � 1){D
unit sphere in R�� :

De�nition 2 The Radon transforms of the functions f(x)

and F (!) are the functions bf(�; p) and bF (�; p), respectively,
on ���1 �R

+ given by formulas

b<�ff(x)g := bf(�; p) = Z
R�

f(x)�(p� h�jxi) dx; (7)

b<�fF (!)g := bF (�; p) = Z
R�

F (!)�(p� h�j!i) d!; (8)

i.e. bf(�; p)and bF (�; p) are equal to integrals of the function
f(x) and F (!) along hyperplanes ��(p):

Radon transform is closely related with �{D Fourier
Transform

f(x) =

Z
R��

F (!)ej2�h!jxid!:

Indeed, if x = jxj�o = t�o; where �o 2 ���1 � R� ; t = jxj;
then to calculate f(x) = f(t�o); one can �rst make in-
tegration by hyperplane h!j�oi = p, and then the inte-
grate 1{D Fourier transforms by p (for every �xed �o) :
f(x) = f(t�o) =

= F�1
� fF (!)g =

Z
R�

F (!)ej2�th!j�
oid! =

=

+1Z
�1

�Z
h!j�oi=p

F (!)d!

�
ej2�tpdp =

=

+1Z
�1

bF (�o; p)ej2�tpdp := F�1
1

nbF (�o; p)o ; (9)

where bF (�o; p) =
=

Z
h!j�oi=p

F (!)d! =

Z
R�

F (!)�(h!j�oi � p)d!:

It means that the �{D FT F�1
� is a composition of the

Radon transform <� and of a family 1{D FT

F�1
� =

n
�0F�1

1 j �o 2 ���1
o
�<� :

The cardinality of 1{D Fourier transforms from this the

family
n
�0F�1

1 j � 2 �0

o
equal to the cardinality of the

sphere (set) ���1: This cardinality is �nite in discrete case
and generate minimal complexity �{D FFT.

Consider ���1 � R+ as a subset of R�+1: It is clear
that it forms a cylinder like surface with p as the axis of the

cylinder. We can consider bF (�0; p) as de�ned on this sur-
face. Consider the f(t�0) as the inverse Fourier transform
of the spectrum F (!): Now t�0 is a point on the ray gen-

erated by the unit vector �0 and is obtained from bF (�0; p)
by 1{D Fourier transform of function bF (�0; p) by variable
p: Since rays t�0 generated by �0 2 ���1 cover signal do-
main R� then all values �{D signal can be obtained. This
connection is called Central Slice Theorem.

Theorem 1 1{D Fourier transform �0F�1
1 of projectionbF (�0; p) along the ray t�o is the central slice of �{dimensional

signal f(t�0):

3. RADON TRANSFORM AND VOLTERRA

SERIES

Return to the expression (4) for � = 2

y(2)(t1; t2)=y(t)=

1Z
1

1Z
1

Y (2)(f1; f2)e
2�j(t1f1+t2f2)df1df2

(10)
Introduce 2{D "time" (t1; t2){spaceR

2 spanned by two unit
"time" vectors e1; e2: Arbitrary 2{D unit vector t0 = t01e1+
t02e2 2 �2 will be called arrow of the time (in terms of the
physic & phylosophy). Let t = (t1; t2) be an arbitrary 2{D

time vector. Then t = jtj
�
t1
jtj ;

t2
jtj

�
= tst

0; where t0 :=�
t1
jtj ;

t2
jtj

�
; ts := jtj is the eigentime lying on t0{th arrow of

time. Classical physical (calendar) time tph lie on the main
diagonal t1 = t2; i.e.on the ray t = tsp

2
(1; 1) = tph(1; 1);

where tph := ts=
p
2:

De�nition 3 The arrow of time tph is called arrow of phys-
ical (calendar) time and all the other t0 6= t

0
ph are called

arrows ghost time.



Represent expression (10) as

y(2)(t) =

1Z
�1

1Z
�1

Y (2)(f1; f2)e
2�jhtjfidf1df2 =

=

1Z
�1

1Z
�1

Y (2)(f1; f2)e
2�j(t1f1+t2f2)df1df2:

Let t = jtjt0 = tst
0; where t0 2 �2; then to calculate

y(2)(tst
0); one can �rst make integration by line ht0jfi =

f = const; and then integrate 1{D Fourier transform by f
(for every �xed t0{th arrow of time):

y(2)(tst
0) =

1Z
1

1Z
1

Y (2)(f1; f2)e
2�jtsht0jfidf1df2 =

=

1Z
1

0
B@ Z
ht0jfi

Y (2)(f1; f2)df1df2

1
CA e2�jtsfdf =

=

1Z
�1

bY (2)(t0; f)e2�jtsfdf;

where bY (2)(to; f) :=
R

htojfi=f
Y (2)(f1; f2)df1df2 =

=

Z
R2

Y (2)(f1; f2)�(f � to1f1 + to2f2)df1df2:

Obviously the physical output of quadratic �lter lies on the
main diagonal t1 = t2; i.e. on the arrow of the physical time
t
o
ph : y(2)(t) = y(2)(tpht

o
ph) =

= y(2)(
p
2tst

0
ph) =

1Z
�1

bY (2)(t0ph; f)e
2�jtsfdf;

where bY (2)(to; f) :=

=

Z
R2

Y (2)(f1; f2)�

�
f � 1p

2
f1 +

1p
2
f2

�
df1df2:

De�nition 4 The output of quadratic �lter y(2)(t) =

y(2)(
p
2tst

0
ph) lying on the arrow of the physical time toph is

called physical output and all the other outputs y(2)(
p
2tst

0);
t
o 6= t

o
ph are called ghost outputs or toth{outputs.

De�nition 5 A some k{collection of the toth{outputs of
quadratic �lter VG

(2)(t) :=

=

2
64

y(2)(tst
0
1)

y(2)(tst
0
2)

: : :

y(2)(tst
0
k)

3
75

is called Volterragram of the 2{th order.

The idea using of 2{D Radon Transform for calcula-
tion of output quadratic �lter can be generalized further.
Return to the expression (4). Introduce �{D "time" t :=
(t1; : : : ; t�){space R

� : Denote by ���1 2 R
� unit sphere.

Arbitrary unit vector (to1; : : : ; t
o
�) 2 ���1 is called an arrow

of the time. For an arbitrary �{D vector t := (t1; : : : ; t�)
we have t := jtjto = tst

o; where ts =: jtj is eigentime lying

on the arrow of the time to :=
�

t1p
�
; : : : ; t�p

�

�
= (to1; : : : ; t

o
�):

Physical time tph lies on the main diagonal t1 = t2 = : : : =
t� ; i.e. on the ray t = tsp

�
(1; : : : ; 1) = tph(1; : : : ; 1); where

tph := ts=
p
�:

Represent (4) as y(�)(t) = y(�)(t1; : : : ; t�) =

=

1Z
�1

: : :

1Z
�1

Y (�)(f1; : : : ; f�)e
2�jhtjfidf1 � � � df� =

=

1Z
�1

1Z
�1

Y (�)(f1; : : : ; f�)e
2�j(t1f1+:::+tnuf�)df1 � � � df� :

Let t = jtjt0 = tst
0; where t0 2 ���1; then calculate

y(�)(t1; : : : ; t�) = y(�)(t) = y(�)(tst
0); one can �rst make

integration by line ht0jfi = f = const; and then integrate
1{D Fourier transform by f (for every �xed t0{th arrow of
the time):

y(�)(tst
0)=

1Z
1

: : :

1Z
1

Y (�)(f1;: : : ;f�)e
2�jtsht0jfidf1� � �df� =

=

1Z
1

0
B@ Z
ht0jfi

Y (�)(f1; : : : ; t�)df1 � � � df�

1
CA e2�jtsfdf =

=

1Z
�1

bY (�)(t0; f)e2�jtsfdf;

where bY (�)(to; f) :=
R

htojfi=f
Y (�)(f1; : : : ; f�)df1 � � � df� =

=

Z
R�

Y (�)(f1; : : : ; f�)�(f � to1f1 + � � �+ to�f�)df1 � � � df� :

Again the physical output of quadratic �lter lies on the
main diagonal t1 = t2 = : : : = t� ; i.e. on the arrow of the
physical time toph : y(�)(t) = y(�)(tph) =

= y(�)(
p
�tst

0
ph) =

1Z
�1

bY (�)(t0ph; f)e
2�jtsfdf;

where bY (�)(to; f) :=

=

Z
R�

Y (�)(f1; : : : ; f�)�

�
f � f1 + � � �+ f�p

�

�
df1 � � � df� :



De�nition 6 The output of �{th �lter y(�)(
p
�tst

0
ph) =

y(�)(t) lying on the arrow of the physical time toph is called

physical output and all the other outputs y(�)(
p
�tst

0); to 6=
t
o
ph are called ghost outputs or toth{outputs.

De�nition 7 A k{collection of the toth{outputs �{th or-
der VG

(�)(t) :=

=

2
64

y(�)(tst
0
1)

y(�)(tst
0
2)

: : :

y(�)(tst
0
k)

3
75

is called Volterragram of �{th order.

According to (2) we have

y(tst0) = H1

�
u(t)

�
+H2

�
u(t)

�
+ : : :+H�

�
u(t)

�
+ : : : =

=

1Z
�1

Y (1)(f)e2�jtsfdf +

1Z
�1

bY (2)(t0; f)e2�jtsfdf+

+:::+

+

1Z
�1

bY (�)(t0; f)e2�jtsfdf + : : : =

=

1Z
�1

bY (�)
� (t0; f)e2�jtsfdf;

where bY (�)
� (t0; f) :=

1X
�=1

bY (�)
� (t0; f)

is the Fourier spectrum of output signal.

De�nition 8 The output of Volterra �lter y(tpht
0
ph) = y(t)

lying on the arrow of the physical time toph is called physical
output and all other outputs

y�(tst
0) =

1Z
�1

bY (�)
� (t0; f)e2�jtsfdf;

are called ghost outputs or toth{outputs.

De�nition 9 A k{collection of the toth{outputs of Volterra
�lter VG�(t) :=

=

2
64

y(tst
0
1)

y(tst
0
2)

: : :
y(tst

0
k)

3
75

is called full Volterragram of Volterra �lter.

A Volterragramm gives a full representation about all
possibility output (physical and ghost) of a Volterra �lter
with di�erent points of view (in di�erent time arrow). In
philosophy such approach is called geschtalt phylosophy.

4. DISCRETE VOLTERRA FILTERS

Discrete time version of the Volterra series is

y(n) =

N�1X
i=0

h1(n� i)x(i)+

+

N�1X
i1=0

N�1X
i2=0

h2(n� i1; n � i2)x(i1)x(i2)+

+ : : :+

+

N�1X
i1=0

: : :

N�1X
i�=0

h�(n� i1; : : : ; n� i�)x(i1) � � �x(i�)+ : : : (11)

where h1(i); h2(i1; i2); h�(i1; i2; : : : ; i�); : : : are the linear,
quadratic, cubic etc. �lter weights or kernels respectively
and N denotes the �lter length. Every term of Volterra
series (11) is the output of a homogeneous and causal �{th
order Volterra �lter

y(�)(n) =

N�1X
i1=0

: : :

N�1X
i�=0

h�(n� i1;: : : ;n � i�)x(i1)� � �x(i�):

By using discrete Fourier transform, we can write:

y(�)(n)=

N�1X
0

: : :

N�1X
0

Y (�)(k1;: : : ;k�)e
2�j

N
(k1+:::+k�)n;

where H(�)(k1; : : : ; k�); X(k) and Y (�)(k1; : : : ; k�) =

H(�)(k1; : : : ; k�)X(k1) � � �X(k�); are the Fourier transform

of h�(i1; : : : ; i�); x(i) and y(�)(n); respectively.
If the product of expression (11) is interpreted as a �{

D discrete signal x(i1; : : : ; i�) = x(i1) � � �x(i�); expression
(11) can be seen as a �{D convolution evaluated on the
main diagonal n = n1= : : :=n� :

y(�)(n1; : : : ; n�)

���
n=n1=:::=n�

=

=

N�1X
k1=0

: : :

N�1X
k�=0

Y (�)(k1; : : : ; k�)e
2�j(n1k1+:::+n�k�)=N ; (12)

which can be implemented e�ciently by using fast Radon
and Fourier transforms.

5. DISCRETE FOURIER AND RADON

TRANSFORMS

Let D�(N) = ZNe1 + ZNe2 + : : : + ZNe� be �{D a dis-
crete paralellepiped. Its elements are column vectors i :=
(i1; : : : ; i�)

� = jii; where i1; : : : ; i� 2 ZN : Let D��(N) be a
dual paralellepiped consisting of row vectors k := (k1; k2; : : : ; k�) =
hkj; k1; : : : ; k� 2 ZN :

De�nition 10 The unitary operators F� and F�1
� acting

by rules

F�ff(i)g := 1p
N

X
i2D�

f(i)e
�j2�hijki

N =F (k);



F�1
� fF (k)g := 1p

N

X
k2D��

N

F (k)e
j2�hijki

N =f(i)

are called direct and inverse discrete �{D Fourier trans-
forms (DFT), where hijki :=P�

s=1
isks:

For convenience we omit in the following the normalization
factor (constant) 1=

p
N:

Let f��g 2 D��(N) be minimal such vector set that the
rays fa�� j = 1; 2; : : : ; N�1g cover the whole parallelepiped
D��(N) : fa�� j a = 1; 2; : : : ; N � 1g: Then we can write
that F (a�0) =

=
X
i2D�

f(i)e
�j2�a
N

h�0jii =
q�1X
p=0

0
@ X
<��ji>=p

f(i)

1
A e

2j�ap

N ;

or

F (a��) =
q�1X
p=0

bf(��; p)e 2j�ap

N ; (13)

where bf(��; p) := R�ff(i)g =
X

<��ji>=p
f(i):

De�nition 11 The function bf(��; p) which is equal to the
sum of values of the signal f(i) on the discrete hyperplane
h��jii = p is called Discrete Radon Transform (DRT) of
f(i) [7].

The expression (13) means that �{D DFT F� is a com-
position of DRTR� and a set 1{D DFT's. The total number
of 1{D DFT is equal to the power of the set f��g: Every
1{D DFT acts along the ray fa��j a = 1; 2; : : : ; L(��)g;
where L(��) is the length of the ray. It is necessary to �nd
such f�0g that would give DRT with minimum computa-
tional complexity. Note that the classical "rown/column
separable " �{D DFT is reduced to �N��1 1{D DFT's of
the lenght N:

Theorem 2 [9] If N = q is a prime integer the total num-
ber of rays RAY(�; q) that cover D��(q) is equal to

RAY(�; q) = (q� � 1)=(q � 1) � q��1;

and each of rays has length L(n; q) = q: All rays spanned
by the following vectors of set f�0g:

� f�og� := (k1; : : : ; k��2; k��1; 1);

� f�og��1 := (k1; : : : ; k��2; 1; 0);

� . . . . . . . . . ,

� f�og2 := (k1; 1; 0 : : : ; 0);

� f�og1 := (1; 0; : : : ; 0);

where ki 2 Zq ; i = 1; 2; : : : ; n:

First, this means that �{D FT is realized not as �q��1

1{D FT, but with help only q��1 1{D FT, second, this mean
that �{th order discrete Volterra �lter have (q��1)=(q�
1) arrows of the time and its Volterragram contain (q� �
1)=(q � 1) terms.

The total complexity of the proposed algorithm [9] for
computing �- -D DRT is

Ad(R�(q)) = �q��2Ad(N1(q));Mu(R�(q)) = 0

and for computing �{D DFT is

Ad(F�(q)) � (� + 1)q��1Ad(F1(q));

Mu(F�(q)) =
q��1 � 1

q � 1
Mu(F1(q));

whereAd(N1(q)) = qAd(F1(q));Mu(N1(q)) = 0;Ad(N1(q));
Mu(N1(q)) and Ad(F1(q)); Mu(F1(q)) are additive and
multiplicative complexities 1{D q{points fast NPT N1(q)
and DFT F1(q), respectively.

6. CONCLUSIONS

Volterra non{linear convolution consists of a collection of
multidimensional convolutions. Every �{D convolution (12)
can be evaluated by an classical fast convolution algorithm,
which requires a �N�=(N +1) 1{D FFT's. Our method re-
quires one �{D Radon transform (Nussbaumer transform)
and one (!) Fourier transform, for calculating physical out-
put of Volterra �lter and one �{D Radon transform and
N��1 Fourier transforms, for calculating physical and all
ghost outputs of Volterra �lter, that decreasing the com-
puter complexity by the factor of � (where � is the order
Volterra �lter) compared to the classical row/column sepa-
rable FFT approach.
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