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ABSTRACT

When selecting a filter for an application, it is often essential to
know the behaviour of the filter in presence of contamination. This
robustness of a filter is traditionally explored by means of influ-
ence function (IF) and change-of-variance function (CVF). How-
ever, as these are asymptotic measures there is uncertainty of the
applicability of the obtained results to the finite length filters used
in the real world applications. This paper disperses this uncer-
tainty by presenting a new method, called output distributional in-
fluence function (ODIF), for examining the robustness of the finite
length filters. The method gives extensive information about the
robustness of any filter with known output distribution function.
As examples the ODIFs for distribution function, density function,
expectation, and variance are given for the mean and the median
filters and interpreted in detail.

1. INFLUENCE FUNCTION

Influence function (IF) is a useful heuristic tool of robust statistics
introduced by Hampel [2, 3] under the name influence curve (IC)
for studying the performance of filters under noisy conditions.

Definition 1 . The IF of estimatorT at underlying probability
distributionF is given by

IF(x;T; F ) = lim
t!0+

T ((1� t)F + t�x)� T (F )

t

for thosex where this limit exists.

In this definition�x is the probability measure which puts mass
1 at the pointx. The IF gives the effect that an infinitesimal con-
tamination at pointx has on the estimatorT when divided by the
mass of the contamination. So the IF gives asymptotic bias caused
by the contamination and thus characterizes properties of the esti-
mator as the number of observations approaches infinity.

We denote by� and� the distribution and the density func-
tions of the standard normal distribution. The influence functions
for the mean and the median are shown in Figure 1 where the un-
derlying distributionF = �. For the mean the gross error sensitiv-
ity, i.e., the worst influence which a small amount of contamination
of fixed size can have on the value of the estimator, equals infinity
and for the median it is finite and equals

p
�
2
� 1:253. So for the

mean single outlier can carry the estimate over all bounds but for
the median an outlier has a fixed influence.
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Figure 1: The IF of the mean (–) and the median (- -) atF = �.

2. CHANGE-OF-VARIANCE FUNCTION

The IF gives only one aspect of robustness of an estimator, namely
local robustness of the asymptotic value of the estimator. Another
important aspect is the local robustness of asymptotic variance.
The asymptotic variance of estimatorT atF denoted byV (T; F )

is defined to be the variance of
p
N [T (FN )� T (F )] asN !1,

whereFN is the empirical distribution of sample(X1;X2; : : : ;

XN ). Local robustness of the asymptotic variance can be charac-
terized by the change-of-variance function (CVF) defined as fol-
lows, [4].

Definition 2. The CVF of estimatorT atF is defined as

CVF(x;T; F ) = lim
t!0+

V (T; (1� t)F + t�x)� V (T;F )

t

for thosex where this limit exists.

If F = �, the CVF of the mean isx2�1 which is displayed in
Figure 2. In the same figure is also shown the CVF of the median
atF = �. It has a constant value

p
�
2
� 1:253 elsewhere but at

zero, where the graph has a negative delta function. If the CVF is
negative, the asymptotic variance of the estimator has decreased,
and if positive, the asymptotic variance has increased. So for the
mean the asymptotic variance decreases if the contamination is in
the interval(�1; 1). The further the contamination is from this
interval the more the variance is increased and a single outlier
can carry the asymptotic variance over all bounds. For the me-
dian contamination at the origin reduces the asymptotic variance
significantly and the contamination anywhere else causes only a
constant increase to the variance of the median. So the median is
robust also in this sense.
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Figure 2: The change-of-variance function of the mean (–) and the
median (- -) atF = �.

3. OUTPUT DISTRIBUTIONAL INFLUENCE FUNCTION

Since the IF is an asymptotic measure, it describes properties of
infinite length filters which may differ from those of finite length
filters used in the real world filtering applications. It would be
more useful and more interesting to examine properties of these
finite length filters rather than the asymptotic properties. For this
purpose some finite sample versions of the IF, such as empirical
IF, sensitivity curve (SC), and a version using jackknife have been
proposed (see e.g. [4] and the references therein). For these either
a real sample(X1;X2; : : : ; XN ) or an artificial sample generated
from the distributionF of the input samples is needed and this
sample itself or the way it is derived from the distributionF affects
the result. What we would like to have is a general method which
uses the distribution functionF of the input samples itself and
not any artificial sample derived fromF . In the case where the
output distribution of a filter can be expressed in a closed form
as a function of the distribution functions of the input samples we
propose this method to be output distributional influence function
(ODIF) introduced in this paper.

We assume here that the input samples are independent and
identically distributed (i.i.d.) random variables. First we need a
way to denote the output distribution function of a filter when a
fraction" of the input samples has different distribution than the
rest of the samples. We denote byH(1�")F+"Gy (�) the output dis-
tributionHF (�) of the filter where every occurrence of the com-
mon distribution functionF of the input samples is replaced by
(1�")F+"Gy andGy can be any distribution function with mean
y. As usual, we defineh(1�")F+"Gy (x) =

d
dx
H(1�")F+"Gy (x).

Now the following definition gives the ODIF for the distribution
function.

Definition 3. Let the output distribution function of a filter be
HF (�)whereF (�) is the common distribution function of the input
samples and letGy(�) be a distribution function having meany.
Then the ODIF for the distribution function
(�) is


(x; y) = lim
"!0+

H(1�")F+"Gy (x)�HF (x)

"

for thosex andy where this limit exists.

If the output distribution functionHF (�) can be expressed as
a simple function of the input distributionF and thus does not

contain any derivative ofF , thenH(1�")F+"Gy (�) is the first-order
von Mises expansion ofHF (�) at F evaluated in(1 � ")F (�) +
"Gy(�) and is given by

H(1�")F+"Gy (x) = HF (x) +
hF (x)

f(x)
" (Gy(x)� F (x))

+

1X
k=2

1

k!

dkHF (x)

(dF (x))k
"
k (Gy(x)� F (x))k :

For this subclass of output distribution functions the ODIF for the
distribution function
(�) can be expressed as


(x; y) =
hF (x)

f(x)
(Gy(x)� F (x)) : (1)

The notations used for the expectation�, the variance�2, the
rth central moment�r, and therth moment about the origin�r of
different distributions are discriminated by giving the distribution
function as subindex, e.g.,�HF ;r is therth central moment of the
distributionHF . We can define the ODIF in the same way as for
distribution function in Definition 3 also for the density function
and moments. The ODIFs for the density function, therth central
moment, and therth moment about the origin are

!(x; y) = lim
"!0+

h(1�")F+"Gy (x)� hF (x)

"
;

!�r (y) = lim
"!0+

�H(1�")F+"Gy
;r � �HF ;r

"
;

and

!�r (y) = lim
"!0+

�H(1�")F+"Gy
;r � �HF ;r

"
;

respectively for thosex andy where the limits exist. They can also
be derived to be

!(x; y) =
d

dx

(x; y); (2)

!�r (y) =

Z
1

�1

x
r
!(x; y)dx; (3)

and

!�r (y) =

r�2X
k=0

�
r

k

�
(�1)k�kHF !�r�k(y)

+!�(y)

r�1X
k=1

k

�
r

k

�
(�1)k�k�1HF

�HF ;r�k: (4)

4. ODIFS FOR MEAN

LetX be the sum of i.i.d. random variablesX1;X2; : : : ; XN hav-
ing common density functionf(�). Since the density of the sum of
N independent random variables is the convolution of the individ-
ual densities (see e.g. [1]), the density function ofX is

fX(x) =

N timesz }| {
f(x) � f(x) � : : : � f(x) :

For the sake of clarity of representation we introduce a new nota-
tion for convolution power

f(x)�N =

N timesz }| {
f(x) � f(x) � : : : � f(x) :



By using this notation the above density function ofX obtains the
form fX(x) = f(x)�N . Now by the density function method, [1],
we obtain that the density function of the meanX

N
is

hF (x) = N
N
f(Nx)�N

and thus the distribution function is

HF (x) = N
N�1

f(Nx)�(N�1) � F (Nx):

The ODIFs for the distribution and the density functions
(�)
and!(�) of the mean ofN samples can be derived by Definition 3
and equation (2) to be


(x; y) = N
N
f(Nx)�(N�1) � (Gy(Nx)� F (Nx))

and

!(x; y) = N
N+1

f(Nx)�(N�1) � (gy(Nx)� f(Nx)) : (5)

ForF = � andGy = �y we obtain

!(x; y) = N
N
f(Nx� y)�(N�1) �N

N+1
f(Nx)�N ;

where the first term isN times the density function of the mean
of lengthN � 1 shifted to the locationx = y

N
and the second

term is(�N) times the density function of the mean of lengthN .
So the contamination decreases the density function in the area of
the original density function and increases it around the location
x = y

N
. Figure 3 shows the ODIF for the density function of the

mean of length 5 for eight different values ofy as function ofx.
The graph where the maximum value is smallest is the one with the
smallesty. Wheny = 0, the contamination is placed to the mean
of � and it increases the height of the density peak and decreases
the tails of the density. For larger values ofy the contamination
attracts the peak of the density and simultaneously decreases the
density in the area of original density.

The ODIF for the expectation gives the effect that the infinites-
imal contamination in the input has on the expectation of the out-
put of the filter when divided by the mass of this contamination.
When the ODIF for the expectation is negative, the contamina-
tionGy has decreased the expectation of the filter, and when it is
positive, the expectation has increased. So the ODIF for the ex-
pectation actually is similar to the IF but it is defined for the finite
length filters and the distribution function of the contamination is
not limited to be�y but can be any distribution functionGy.

After substituting!(�) from equation(5) into equation (3) and
simplifying the expression, the ODIF for the expectation!�(y) is

!�(y) = y � �F :

So for the mean filter the ODIF for the expectation is the same
for all lengthsN and depends only on the expectations of distri-
butionsGy andF . If �F = 0, then the ODIF for the expectation
is the same as the IF of the mean forF = � in Figure 1. More
generally, for any distributionsF andGy the IF and the ODIF for
the expectation are equal. So the finite length mean filters have ex-
actly the same robustness properties as the asymptotic case given
by the IF, i.e., the further the contamination is from the origin the
larger is the influence it has on the expectation.

The ODIF for the variance!�2(�) of the mean ofN samples
can be derived by using equation (4) to be

!�2(y) =
�2Gy + y2 � 2�F y + �2F � �2F

N
:
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Figure 3: The ODIFs for the density function of the mean of length
5 for y = 0; 1; : : : ; 7 atF = � andGy = �y. The graph where
the maximum value is smallest is the one with the smallesty.

NowN!�2(�) is the same for any filter lengthN and depends
only on the means and the variances of the distributionsF and
Gy. If F = � andGy = �y, thenN!�2(y) is y2 � 1 which
is the same as the CVF forF = � displayed in Figure 2. The
only difference betweenN!�2(�) and the CVF of the mean for
any distributionsF andGy is that the former has an additional
term�2Gy which forGy = �y equals zero.

5. ODIFS FOR MEDIAN

Since the median ofN = 2n + 1 samples is the(n + 1)th or-
der statistic, the output distribution and density functions of the
median ofN samples are

HF (x) =

NX
k=n+1

�
N

k

�
F (x)k(1� F (x))N�k

and

hF (x) =
N !

(n!)2
F (x)n (1� F (x))n f(x):

The ODIF for the distribution and the density functions
(�)
and!(�) of the median ofN samples are by equations (1) and (2)


(x; y) =
N !

(n!)2
F (x)n (1� F (x))n (Gy(x)� F (x))

and

!(x; y) =
N !

(n!)2
F (x)n�1 (1� F (x))n�1

�
h
nf(x) (1� 2F (x)) (Gy(x)� F (x))

+F (x) (1� F (x)) (gy(x)� f(x))
i
:

We consider as an example also for the median the case where
F = �, Gy = �y andN = 5. Now the ODIF for the density
function follows the solid line in Figure 4 whenx < y and the
dashed line whenx > y. At point x = y there is a delta function
having coefficient30�(y)5(1��(y))5. The plot of this coefficient
is bell shaped having highest value aty = 0 and going practically
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Figure 4: Graphs atF = � andGy = �y that the ODIF for the
density function follows whenx < y (–) andx > y (- -).

to zero in the same area as the graphs in Figure 4 go. This figure
together with the knowledge that the coefficient of delta function
is practically zero whenjyj > 2:5 predicts that contamination any-
where in this area has the same fixed influence predicting bounded
ODIFs for the expectation and the variance and robustness of the
filter. This will be confirmed in the next section.

5.1. Effect of the Filter Length upon Robustness

In this subsection we examine the effect of the filter length upon
the robustness of the median filter by using ODIF for the expec-
tation and the variance. Often when the nonlinear filters are used,
the lengths are short and the asymptotic behaviour given by the
IF and the CVF can be far from the actual one and even include
behaviour that does not exist for the small filter lengths. For this
problem the ODIF provides a solution by giving the graphs for the
specified filter length.

WhenF = � andGy = �y, the following form is obtained
for the ODIF for the expectation!�(�) of the median ofN samples
from equation (3)

!�(y) =
N !

(n!)2

�Z y

�1

xnF (x)n(1� F (x))n�1f(x)

�(2F (x)� 1)dx+

Z
1

y

xnF (x)n�1

�(1� F (x))nf(x)(1� 2F (x))dx

+yF (y)n (1� F (y))n

�
Z
1

�1

xF (x)n (1� F (x))n f(x)dx

�
:

In Figure 5 are graphs of the ODIFs for the expectation of the
median filter for three different filter lengths and the IF of the me-
dian from Figure 1. The ODIFs for the expectation provide similar
quantitative information and similar quantities can be derived from
them as from the IF but now for finite length filters. The ODIFs
for the expectation for different filter lengths differ from each other
and also from the IF of the median. However, as the length of the
filter increases, the ODIF for the expectation approaches to the IF
of the median. As can be observed from Figure 5 the supremum
of the absolute value of the median is limited also for finite length
filters but has higher value for smaller filter length. Since the IF
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Figure 5: The IF of the median (solid line) and the ODIFs for
the expectation of the median filters of lengths3 (short dashes),5
(medium dashes), and15 (long dashes) atF = � andGy = �y.

of the median has a jump at zero, a wiggling phenomenon can oc-
cur when there are small fluctuations in the observations. As the
graphs of the ODIFs for the expectation in Figure 5 do not have
this jump, the wiggling phenomenon is not a problem in the small
finite length median filters but becomes such as the filter length
gets longer.

In the same case as above, whereF = � andGy = �y, the
ODIF for the variance!�2(�) of the median is obtained by using
equation (4) and noticing that in this case�HF = 0. Thus

!�2(y) =
N !

(n!)2

�Z y

�1

x
2
nF (x)n (1� F (x))n�1 f(x)

�(2F (x)� 1)dx+

Z
1

y

x
2
nF (x)n�1

� (1� F (x))n f(x) (1� 2F (x)) dx

+y2F (y)n (1� F (y))n

�
Z
1

�1

x
2
F (x)n (1� F (x))n f(x)dx

�
:

The graph of functionN!�2(y) is shown in Figure 6 for the same
three lengths as in the previous figure. There is also shown for
comparison the CVF from Figure 2. The graphs of the ODIFs
for the variance multiplied byN can be interpreted in a similar
manner as the graphs of the CVF. So we can see that the finite
length median is robust in this sense since the graphs are bounded
above. AsN increases, the positive constant part gets smaller and
simultaneously the negative spike in the origin gets narrower and
deeper. So the form of the graph of ODIF for variance multiplied
byN approaches the CVF asN approaches infinity.

5.2. Analysis of Different Noise DistributionsGy

In the IF quite unrealistic noise model, the delta distribution, is al-
ways used. In our ODIFs we can use more realistic noise distribu-
tions and thus make use of the knowledge we have of the possible
noise sources in specific applications. So the ODIF is much more
flexible method than the IF and the CVF and it can be adjusted to
varying conditions by adjusting the distributionGy.

As an example we examine the median filter of length5 when
F = � andGy is delta, Laplace, normal, and uniform distribution.
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Figure 6: The change-of-variance function of the median (solid
line) and the ODIFs for the variance of the median filters of lengths
3 (short dashes),5 (medium dashes), and15 (long dashes) multi-
plied by the filter lengthN atF = � andGy = �y.

In Figure 7 we show the ODIFs for the expectation for the above
median filter for the different noise distributionsGy. We can see
from this figure that the constant parts of the graphs are all on the
same level and thus the supremum of the absolute value is the same
for all the four cases. In the area of small contamination the graphs
are different but graphs for other distributions than the delta distri-
bution differ from each other only slightly and much more from the
one for the delta distribution. The mean, the variance and the shape
of the density of the contamination all have influence on the ODIF
for the expectation obtained for the median. When the variance of
any of the distributions approaches zero the graphs approach the
solid line in Figure 7 obtained for delta distribution. The smaller
the variance the nearer the origin the constant level is reached. The
shape of the density determines the behaviour of the graphs near
the origin. The Laplace distribution is the most peaked of the three
and the uniform the flattest. The more peaked the distribution the
closer the result is to the graph for delta distribution in the vicinity
of the origin. The tails of the contaminating distribution on the
other hand determine how soon the constant level is reached. So
the graph for the uniform distribution reaches the constant level
with smallesty and the graph for the Laplace with highest.

Figure 8 shows the ODIFs for the variance multiplied byN

in the same situation as Figure 7 for the expectation. Very similar
behaviour due to the shape of the contaminating distribution is no-
ticeable from this figure as was from the previous one. Since the
variance of contamination is ten times the variance of distribution
�, for the Laplace, the normal, and the uniform distributions, the
variance never decreases compared to the case with no contamina-
tion. By lowering the variances of the contaminations the ODIFs
for the variance multiplied byN would approach the solid line and
become negative near the origin.

6. CONCLUSIONS

In this paper we have introduced the ODIF, a new useful method
for assessing the robustness properties of finite length filters. The
ODIF was shown to be a good theoretical analysis tool which at the
same time is applicable to the real filtering situations. Nonlinear
filters do not have many theoretical analysis tools and the ODIF
gives a new possibility to analyse and compare many of these fil-
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Figure 7: The ODIFs for the expectation of the median filter of
length 5 at F = � when Gy is Laplace (short dashes), nor-
mal (medium dashes), and uniform distribution (long dashes) with
variances 10 and whenGy = �y (solid line).
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Figure 8: The ODIFs for the variance of the median filter of length
5 multiplied by5 at F = � whenGy is Laplace (short dashes),
normal (medium dashes), and uniform distribution (long dashes)
with variances 10 and whenGy = �y (solid line).

ters. The performance of the method was demonstrated by using
the commonly used mean and median filters as examples and the
relations of the ODIFs for the expectation and the variance to the
traditionally used IF and CVF were discussed. Since in the same
way as for the IF and the CVF the interpretation of the obtained
curves is very essential, detailed interpretation was given for all
the figures. Especially the effect of the filter length and the differ-
ent noise distributions were considered.

7. REFERENCES

[1] C. Ash,The Probability Tutoring Book, IEEE Press, 1993.

[2] F. R. Hampel, Contribution to the Theory of Robust Estima-
tion, Ph.D. Thesis, University of California, Berkeley, 1968.

[3] F. R. Hampel, ”The Influence Curve and Its Role in Robust
Estimation”, inJournal of the American Statistical Associa-
tion, vol. 69, no. 346, pp. 383–393, June 1974.

[4] F. R. Hampel, P. J. Rousseeuw, E. M. Ronchetti and W. A.
Stahel,Robust Statistics: The Approach Based on Influence
Functions, Wiley, New York, 1986.


