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ABSTRACT

This paper presents a novel iterative blind deconvolution
algorithm, which simultaneously generates solutions for both the
PSF and the source image. The algorithm progresses by applying
a priori constraints in both the Fourier and image domain to
significantly reduce the size of the solution set. Within the new
algorithm the image restoration is performed using the technique
called Projection onto Convex Sets (POCS). The result of
applying this form of non-linear restoration creates a very robust
algorithm, which we call the Blind POCS Deconvolution
Algorithm (BPDA). BPDA has been successfully applied to
blurred and noisy synthetic and real images, it produces high
quality restorations. Some of the relevant experimental results are
presented and discussed.

1. INTRODUCTION

Blind deconvolution is the process of restoring an optical image
without explicit knowledge of the characteristics of the imaging
system. Images produced from typical confocal laser scanning or
widefield optical microscopes are noisy and invariably blurred by
the Point Spread Function (PSF), of the microscope system used.
For correct scientific interpretation and analysis of a typical image
obtained in this way, it is essential that the image is further
processed to remove these aberrations. Measurement and
modeling the characteristics of a microscope imaging system is
not ideal and the measurements are quite difficult and time
consuming to perform.

Blind deconvolution has been applied before to diverse areas such
as communication, speech, spectroscopy and astronomy, see for
example [9-12]. There is however only a limited amount of work
in the literature which is specifically for optical microscopy
applications [1,4]. Previously Razaz and Hudson developed a fast
iterative non-linear blind deconvolution algorithm (BDA), which
was applied to the restoration of optical microscope images [1].
This algorithm functions well when the images have high signal to
noise ratio (SNR) but lacks the robustness offered by BPDA. A
comparison between the two algorithms is made in the results
section.

1.1 Projection Onto Convex Sets

We assume an image restoration model as in equation (1) with
additive Gaussian noise distribution. This equation is ill-posed

and therefore has an infinite number of solutions, mainly due to
the presence of noise. The POCS method [14] finds the source
image ‘f ’, given the observed image ‘g’, PSF and a number of
prior constraints. Each constraint forms a closed convex set onto
which a solution is orthogonally projected. For a number of
constraints, the solution lies in the intersection of the
corresponding convex sets. A variety of constraints can be
applied.

(1)

The positivity constraint and the upper bound on noise are two
such constraints which are represented by the closed convex sets
‘ς1’  and ‘ς2’  respectively, as shown in Figure 1.

Figure 1: Shows the alternate perpendicular projections
made from an arbitrary starting point in Hilbert space
towards a solution of (1), which satisfies both constraints.

The distance between successive projection points shown in
Figure 1, represents the change in  the guess image and is
termed ‘∆f’ . The derivation of an expression for ‘∆f’,
begins with defining the ‘norm’ of a residual vector as
shown by (2).

(2)

nHfg +=

kgHf’ ≤− 2

Hilbert Space

'f' Initial Ideal
Estimate

'f' Final Ideal
Estimate

ς1

Pς1

Pς2

ς2



where
 k    = The upper bound on noise variance.

(3)

Taking the upper limit of (2) and then substituting the terms from
(3) into (2) results in:

(4)

This is still an ill-posed problem and must be regularised. We now
introduce a regularisation procedure by modifying the ‘H’
operator.  Modification of ‘H’  is made by applying constraints on
the solution ’f ’ , this condition is shown by (5), where ‘c’ is a
constant and ‘B’ the regularisation operator.

(5)

To satisfy the two conditions proposed by (4) and (5) the two are
combined and minimised with respect to the modified solution
‘∆f ’  (6).

(6)

The solution to (6), which can be derived in various ways [14],
results in the expression shown by (7) and this equation forms the
basis for applying the POCS algorithm:

(7)

The ‘B'  matrix is often assumed to be unitary, in such cases the
term BTB  reduces to the identity matrix and consequently the
regularisation is applied solely using the ‘µ’ parameter. This
equation can be made computationally simpler using singular
value decomposition (SVD). The SVD equivalent version to   (7)
is:

(8)

 where

{u,σ,v} represent the singular systems of ‘H’.

The parameter ’µ’ is known as the regularisation parameter and
determines the amount of smoothing of the solution. If there is too
much smoothing then the solution does not resemble the problem,
if there is too little then the problems associated with  using a
pseudo inverse operator will be encountered. The regularisation

parameter is determined in an iterative manner using a Newton-
Raphson iterative technique as in (9).

(9)

2. THE BLIND POCS DECONVOLUTION

ALGORITHM

Figure 2, shows the structure of BPDA. It is initially supplied with
either a Bessel function approximation to the Point Spread
Function for a microscope imaging system [7], or a theoretical
PSF which takes into account certain a priori information about
the geometry of the microscope and the chemistry of the slide [8].
Selection of either PSF’s only defines the general shape of the
initial PSF estimate. The size of the PSF which in turn is defined
by the pixel spacing is unknown. It is estimated by finding the
corresponding PSF from a set, which minimises a POCS residual
measure. The technique of least squares minimisation has been
utilised by other authors such as [6] using POCS and [5] using the
conjugate gradient algorithm. Performing this process removes a
previous necessity of BDA which was to present the algorithm
with a reasonably accurate initial estimate of the PSF. The BPDA
only requires that the general form of the PSF which is to be used
as an initial PSF is specified. The PSF which corresponds to the
smallest residual is selected as the initial PSF and is presented to
the algorithm in the form of  'h0’.

The 2D FFT is then taken to create the initial estimate of the
optical transfer function (OTF), ‘H0’. The previous OTF estimate
‘Hn-1’ and the present estimate ‘nH

~
’, are then combined to form a

new updated estimate of the OTF.

The first ideal image estimate in the Fourier transform domain
‘F 0’ is generated by restoring the observed image with POCS
using the 2D IFFT of ‘H 0’  as the PSF. To calculate the iterated
POCS restored ideal image ‘Fn’, the noise level of the  image
needs to be calculated. Once the SNR is established the SVD of
the PSF is calculated. This calculation is a relatively slow process
and for a 128x128 image using a magnitude only OTF it requires
calculation of 65 singular systems, taking approximately four
minutes of CPU time on a 180 MHz Silicon Graphics workstation.
Once both of the pre-requisites are complete, POCS can perform
its restoration. The  restored image is combined with the previous
image to form the present estimate of the ideal image  'Fn’ .

The next stage in the process is to weight the present ideal image
by the 'W' factor which is a Gaussian filter, this action overcomes
problems encountered in extended regions of low or zero values
when using inverse filters [10]. After the inverse FFT is taken of
the image, the image constraints are applied.

The algorithm then performs the same steps as those  described
above, this time the aim is to produce the next estimate of the
PSF. Once derived the PSF is constrained and is subsequently
used to estimate the next ideal image. The iterations continue until
the conditions for the algorithms termination are met or a
predetermined number of iterations have been performed. The
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Figure 2. Block diagram of the Blind POCS Deconvolution Algorithm.

H0

termination parameter presently used is dependent upon an
increase in the POCS residual measure (10):

(10)

2.1     Constraints

The constraints applied to both the image and the PSF form the
heart of the iterative algorithm. If no constraints are applied,
execution of the BPDA will result in the deconvolved output
image and PSF  being the same as the initial estimates. It is
therefore the case that as many effective constraints must be
applied as possible. This makes the search for ‘good’ constraints
intense.

By applying POCS, two constraints have already been explicitly
imposed, the positivity constraint and the upper bound limit of the
noise level. Other constraints which could be conditionally
applied are:

• PSF spline-fitting constraint.

• PSF range and positivity.

• OTF Band-limitness constraint.

• Image spatial filtering constraint.

• Reduced set PSF constraint.

The spline fitting constraint is applied in the PSF domain, it is
based on fitting a ‘bi-cubic’ spline of the best fit to the
deconvolved PSF. This technique has been successfully used in
the modeling of measured PSF’s [2]. The PSF can also be
constrained to remove any intensity level offset and ensure that all
pixel intensities are greater than or equal to zero.

The OTF band limiting constraint, limits the PSF spectrum to be
of the form of a low pass filter [5], this is applied by filtering the
observed image ‘G’. This ensures that the OTF, ‘Hn’ created by
inverse filtering has attenuated values beyond the bandwidth of
the imaging system. The cut-off frequency is set by the maximum
resolution of the imaging system.

Literature on effective image domain constraints is sparse and has
been previously limited to applying the positivity constraint [1]
and conservation of image energy [10]. The BPDA however
imposes spatial filtering constraints. This enhances the algorithm
by combining the good qualities offered by spatial filtering noisy
images using local neighbourhood statistics. One particularly
effective spatial filter utilised is based on the work  in [13] .

Constraining the deconvolved PSF to belong to a reduced set of
theoretical PSF’s generated in accordance with the work in [8],
firstly ensures that all the a priori information available about the
imaging system is used, and secondly ensures that the trivial
solution to the blind deconvolution problem is avoided. The
constraint is applied by selecting a PSF which minimises an error
metric defined by equations (11) and (12).
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(12)

For each iteration the constraint calculates the error (11) and
selects the PSF ‘hn’ that corresponds to a minimum in the error
function (12).  This constraint when applied replaces the inverse
filter used in BPDA, and thus removes all the problems associated
with inverse filtering.

3. RESULTS

We have applied the new blind deconvolution algorithm BPDA to
a series of synthetic and real images. We present here some typical
results. All restored images shown were obtained after 6 iterations
of the respective algorithms.

The image shown in Figure 3, is a ‘real’ image captured with a
confocal microscope imaging system. The exact PSF is therefore
not known. Using techniques for measuring and modeling the PSF
introduced in [2], a close approximation to the true PSF can be
generated. The POCS restoration using the observed image and
the modeled PSF will therefore approximate the ideal or source
image. This allows a quality measure to be made between the
sighted restoration and the unsighted blindly deconvolved image.

Figure 4 shows BPDA and BDA applied to an ‘artificial’ image.
The term artificial refers to the fact that the source image is
available and is blurred by convolution with a known PSF. The
blurred image is then degraded further by adding Gaussian
distributed noise.

Figure 4: Blind deconvolution of a synthetic blurred and
noisy image. Figure 4a shows the original image from a
3D perspective which has been chosen to highlight the
noise. Figure 4b shows the blurred and noisy image (15
dB SNR). Figure 4c shows the BDA restored image and
Figure 4d the restoration achieved by using BPDA. Figure
4e shows the same ideal image as Figure 4a, except that it
is heavily degraded by blur and Gaussian noise (6 dB
SNR). Figure 4f shows the BPDA restoration of the
Figure 4e.
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Figure 3: Restoration of a real blurred and noisy image.
Figure 3a shows the original microscope image, Figure
3b shows the restoration achieved using a measured and
modeled PSF and Figure 3c shows the BPDA
restoration
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The final image in Figure 5 shows the BPDA restoration of an
image with good SNR. The reduced PSF set constraint was
applied during the blind deconvolution of this image.

Figure 5: Blind restoration of a picture after it has been
made blurred and noisy. Figure 5a shows the source
image; Figure 5b shows the artificially blurred image,
which has a SNR of 50 dB. Figure 5c shows the BPDA
restoration.

4. SUMMARY

In this paper we presented a new iterative blind deconvolution
algorithm that performs well on blurred images that have low
signal to noise ratios. It has been extensively tested and the results
compared to those created using BDA. For images containing
moderate levels of noise the two algorithms are comparable in
performance but when considerable noise is present BPDA creates
far better quality restorations.
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