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ABSTRACT

In digital systems, the amplitude of a time series is quan-
tised with finite resolution. This is a nonlinear process
which introduces distortion.

We develop a Bayesian, model-based approach to reduc-
ing the quantisation distortion when moving a time series,
such as an audio signal, to a higher resolution medium. The
signal is modelled as a discrete-time, continuous-valued au-
toregressive (AR) process of unknown order.

The model parameters and reconstructed signal are es-
timated using Markov chain Monte Carlo (MCMC) tech-
niques. This requires samples to be drawn from a truncated
multivariate Gaussian distribution, for which a Metropolis-
Hastings approach is developed.

1. QUANTISATION DISTORTION

For digital processing, transmission, or storage, a signal is
represented as discrete in both time (due to sampling) and
value (due to quantisation). The quantisation process intro-
duces an error component, often referred to as ‘quantisation
noise’. Since this quantisation error is signal-dependent, it
is perhaps better described asquantisation distortion.

The distortion consists of a series of added harmonics,
together with aliased images of them. For complicated sig-
nals, this can be quite innocuous, behaving very much like
white noise. When the signal is simple, however, the struc-
ture becomes clear. Furthermore, the relative levels of the
added harmonics (and their inharmonic aliases) vary signif-
icantly with small changes in the level of the input signal.
This behaviour can be disturbing in music signals, espe-
cially with those instruments, such as pianos, whose note
waveforms become more sinusoidal as they decay. This ef-
fect produces what is known as ‘granulation noise’ [1].

Quantisation occurs both during analogue-to-digital
conversion and during any subsequent manipulation of the
digital signal that increases the word length, such as multi-
plication.
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Figure 1: Modelling of quantised signal:e is the excitation
process,x the undistorted signal, andy the observed, quan-
tised signal.

Although there has been much research into the effects
of quantisation and their elimination at the time of quantisa-
tion through the use of dither (see [2] for a comprehensive
survey), there does not appear to be any published work on
reconstructing an unknown signal, such as audio, when only
a coarsely quantised version is available.

2. MODELLING FRAMEWORK

As shown in figure 1, we model the signal and the quanti-
sation process explicitly. We assume stationarity of the pro-
cess; nonstationary signals, such as audio, can be processed
in short blocks.

2.1. Source model

We model the unquantised signalx as a (discrete-time)
continuous-valued autoregressive process of orderk with
parametersa(k), excited by white zero-mean Gaussian noise
e with varianceσ2

e . This can be represented in matrix-vector
form as:

e = A(k)x = x1 −X(k)a(k) p(e) = N
(
e | 0, σ2

e I
)

wherex0 andx1 are formed by partitioningx into, respec-
tively, the firstk values and the remainder, and the matrices
A andX(k) take appropriate forms [3]. The conditional
likelihood forx can then be expressed as:

p(x1 | k,a(k), σ2
e ,x0) ≈ N

(
A(k)x | 0, σ2

e I
)

(1)



2.2. Perfect quantiser

The quantisation process is deterministic:

y = Q(x)

wherey is the observed, quantised signal andQ(·) is the
quantisation function. For a perfect quantiser,Q(xt) = n∆
if (n − 1

2 )∆ ≤ xt < (n + 1
2 )∆, for integern. If the

quantiser’s step height,∆, is one thenQ(·) is equivalent to
rounding. In practical analogue-to-digital converters, quan-
tisation is often far from perfect, possibly exhibiting uneven
step heights and missed codes (seee.g.[4]). If these defects
are memoryless, they can be incorporated straightforwardly
into Q(·).
2.3. Prior distributions

Prior distributions represent our knowledge of the parameter
values before analysing the signal. Since we are performing
Bayesian model selection, the distributions must be proper.
As in [5], k, a(k), σ2

a andσ2
e are assumed to bea priori in-

dependent. We choose simple conjugate prior distributions
which can be made quite uninformative with suitable hyper-
parameter values:

p(k) =

{
1

kmax+1 k ∈ {0, 1, . . . kmax}
0 elsewhere

p(a(k) | k) = N
(
a(k) | 0, σ2

a Ik

)
p(σ2

a ) = IG
(
σ2
a | αa, βa

)
p(σ2

e ) = IG
(
σ2
e | αe, βe

)
whereN(·) is the multivariate Gaussian distribution and
IG(·) represents the inverse Gamma distribution, which can
closely approximate the Jeffreys’ prior.

3. BAYESIAN ESTIMATION & MCMC

We wish to reconstructx given onlyy. Bayesian inference
aboutx is made on the basis of the marginal posterior dis-
tribution p(x | y). We cannot evaluate this analytically, so
we use an MCMC approach (seee.g.[6]), in which we:

• Construct a Markov chain to draw (correlated) sam-
ples from the joint posterior,p(x, k,a(k), σ2

e , σ2
a | y)

• Use these samples to calculate a Monte Carlo esti-
mate ofp(x | y).

We now look at the moves necessary to form the Markov
chain.

3.1. AR order and parameters

As described in [5], we can samplek,a(k) ∼ p(k,a(k) |
x, σ2

e , σ2
a ). Reversible-jump moves [7] are used because of

the variable dimensionality. Moves from a model of orderk
to one of orderk′ are proposed by sampling from a discre-
tised Laplacian density centred onk:

k′ ∼ J(k → k′) ∝ exp(− 1
λ |k′ − k|)

Proposing the entire new parameter vector,a(k′), from its
full conditional distribution, which is available analytically:

p(a(k′) | k′,x, σ2
a , σ2

e ) ∝ N
(
a(k′) | µsa(k′) ,Csa(k′)

)
where

C−1
sa(k′) = σ−2

e X(k′)T
X(k′) + σ−2

a Ik′

µsa(k′) = σ−2
e CT

sa(k′)X(k′)T
x

leads to the acceptance probability for the model move be-
ing independent of botha(k) anda(k′):

A
(
(k,a(k)) → (k′,a(k′))

)
= min

(
1,

σ−k′
a

σ−k
a

∣∣Csa(k′)
∣∣ 12∣∣Csa(k)

∣∣ 12
J(k′ → k)
J(k → k′)

exp
(

1
2µT

sa(k′)C
−1
sa(k′)µsa(k′)

)
exp
(

1
2µT

sa(k)C
−1
sa(k)µsa(k)

) )

This approach gives a well mixed chain, with fast conver-
gence [5]. The hyperparameters are sampled using straight-
forward Gibbs sampler moves.

3.2. Reconstructed signal

The quantisation process is a many-to-one mapping, so its
inverse is one-to-many and provides the range of possible
values that the input might have taken,i.e.

x ∈ Q−1(y)

Combining this knowledge with the conditional likelihood
(eq. 1) for an autoregressive signal, gives:

p(x1 | y, k,a(k), σ2
e ,x0)

∝
{

p(x1 | k,a(k), σ2
e ,x0) x ∈ Q−1(y)

0 elsewhere
(2)

Since it is not computationally feasible to sample from the
whole ofx directly (see§4), a Gibbs sampler approach is
taken, in which a part of the block,xu, is sampled condi-
tional on the remainder,xf . This is repeated, with different
partitioning, until the whole block has been sampled.

The partitioning is as follows

e = A(k)x = A(k)
u xu + A(k)

f xf (3)



where(·)f also containsx0 and the firstk samples from
the following block, to ensure continuity across the block
boundaries.1 (·)u need not be contiguous, but since it is
likely that adjacent samples will be more highly correlated,
it may be advantageous to sample them jointly.

The full conditional distribution forxu is the same as
that required for interpolation [8,§12.5.1], except that it is
bounded to lie withinQ−1(yu). If the bounds are repre-
sented by the function

B(x) =

{
1 x ∈ Q−1(y)
0 elsewhere

then equation (2) can be rearranged as

p(xu | y,xf , k,a(k), σ2
e )

∝ B(xu)× pe(A(k)
u xu + A(k)

f xf )

∝ B(xu)×N
(
A(k)

u xu | −A(k)
f xf , σ2

e

)
∝ B(xu)×N

(
xu | µlxu

,Clxu

)
(4)

where

Clxu = σ2
e (A(k)T

u A(k)
u )−1

µlxu
= −(A(k)T

u A(k)
u )−1A(k)T

u A(k)
f xf

(5)

which is a multivariate Gaussian distribution, truncated to a
hypercube2 in xu-space.

4. SAMPLING TRUNCATED GAUSSIANS

The usual method for sampling from ann-dimensional mul-
tivariate Gaussian distribution is to find, using the Cholesky
decomposition, the linear transformation required to diag-
onalise the covariance matrix. A vector ofn independent
samples can then be drawn from a univariate Gaussian dis-
tribution and inverse transformed to give a sample from the
multivariate distribution.

To obtain samples from a distributionB(θ) ×
N(θ | µ,C), the simplest method would simply be to draw
samples from the unbounded Gaussian and reject those
which lie outside the bounded area. The average accep-
tance rate will equal the proportion of the probability mass
of the Gaussian distribution which lies within the bounds.
It will hence tend to decrease as the number of dimensions
increases. If the bounds are both out in one tail of the distri-
bution, it could be vanishingly small.

Efficient methods have been developed for sampling
from univariate truncated Gaussian distributions by rejec-
tion sampling using different Rayleigh or exponential distri-
butions depending on the positions of the bounds [9, 10] or
by using the inverse cumulative distribution function [11].

1In fact the structure of�lxu
(eq. 5) is such that the(·)f partition need

only contain the nearestk samples to each side of the(·)u partition.
2This is for a perfect quantiser; more generally it will be a cuboid re-

gion.

In this case, it is not possible simply to draw from uni-
variate truncated distributions and transform: although the
faces of the cuboid forming the bounds are parallel to the
axes inθ-space, they generally will not be after transfor-
mation, so the bounds on each element will depend on the
values of the others, preventing independent sampling.

This problem can be addressed, at the cost of producing
dependent samples, using MCMC methods.

4.1. Gibbs sampling

One way to produce samples from the truncated distribution
is to use a Gibbs sampler, in which each element is sampled
from its full conditional distribution, in this case a truncated
univariate Gaussian. This method is suggested in [10] and
[11]. For this problem, it can be implemented straightfor-
wardly by making the partition(·)u in equation (3) contain
a single element. Equation (4) then becomes the required
full conditional distribution.

This is a potential drawback with this method: in an
MCMC scheme, when some variables are highly correlated,
convergence will tend to be slow unless those variables are
sampled jointly [12]. Hence, if the non-diagonal elements
of C are significant, convergence may be slow.

θ1

θ 2

A

B

The inset proba-
bility contour plot il-
lustrates the problem
in two dimensions:
the sampler can only
move parallel to the
axes, and will tend
to stay in relatively
high probability re-
gions, so it cannot
move between points A and B quickly. In higher dimen-
sions, this lack of mobility becomes serious.

4.2. Gaussian windowing

In order to be able to sample multiple components jointly,
we now describe an alternative technique, which does not
appear to have been suggested elsewhere.

As discussed earlier, direct rejection sampling using the
unbounded distribution is very inefficient if most of the
probability lies outside the bounds. Multiplying the (un-
bounded) target Gaussian distribution by another multivari-
ate Gaussian, centred within the bounds, results in a distri-
bution which is related to the target distribution but has a
much greater probability within the bounds. The combined



distribution is itself a multivariate Gaussian:

Combined︷ ︸︸ ︷
N(θ | µc,Cc) ∝

Target︷ ︸︸ ︷
N(θ | µ,C)

×N
(
θ | bmax+bmin

2 , κ× diag(bmax− bmin)
)︸ ︷︷ ︸

Window

wherebmax andbmin are vectors containing the bounds on
each element,κ is thewindow factorandCc andµc can be
derived straightforwardly.

Independent samples can be drawn from this combined
distribution and rejection sampling can be used to enforce
the bounds. The bias introduced by the windowing function
can then be removed by an independence sampler step [6]:

α
(
θ → θ′

)
= min

(
1,

N
(
θ′ | µ,C

)
N(θ | µ,C)

N(θ | µc,Cc)
N
(
θ′ | µc,Cc

))

which can be simplified through cancellation.
The value ofκ controls the trade-off between the accep-

tance rates in the rejection sampling step and in the inde-
pendence sampler.

The acceptance rate falls as the dimension ofθ in-
creases, so for a given acceptance rate, the number of el-
ements ofx which can be sampled jointly will be limited.
For the quantisation removal problem, experimentation has
shown that joint sampling of5 elements is acceptably effi-
cient.

The structure of the covariance matrix (eq. 4) is such that
adjacent samples will have highest correlation, so sampling
subblocksxu of consecutive samples should give fastest
convergence. If fixed subblocks were used, samples on the
subblock boundaries would never be sampled jointly with
those on the adjacent subblock. This problem is avoided by
applying a random offset to the subblocking on each itera-
tion.

4.3. Comparison for synthetic AR data

The performance of the two methods was compared for a
simple quantisation distortion problem. An AR(2) signal
was synthesised, with poles at0.99ejπ±15

180 and white Gaus-
sian excitation of unit variance. The signal was quantised
with a step height of20, which introduced quantisation dis-
tortion 9.5 dB (rms) below the signal. A single block of
512 samples was restored, with the AR model order fixed at
two.3 Fifty runs of 100 iterations were made with each of
the algorithms. In the windowing algorithm,κ was10 and
blocks of five consecutive samples were sampled jointly.

Figure 2 shows the distortion:signal ratio at each itera-
tion, averaged across the50 runs of each algorithm. It can

3To avoid end effects, which become insignificant in signals with many
blocks, two samples before and after the block were made available from
the unquantised signal.
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Figure 2: Comparison of truncated Gaussian sampling algo-
rithms: (dotted)univariate Gibbs sampler, and(solid) win-
dowed Gaussian method. The plot shows performance in
reducing quantisation distortion in a synthetic AR(2) signal.

be seen that the windowing algorithm exhibits much faster
convergence. The total computation time was also signifi-
cantly less than for the Gibbs sampling algorithm.

4.4. Discussion

On the basis of this test, the joint sampling algorithm is cho-
sen. The efficiency might be improved further by changing
the windowing function. A single Gaussian is not very close
in shape to the required rectangular window. A closer fit
could be achieved by using a mixture of Gaussians, for ex-
ample equispaced Gaussians across the bounded region. A
smaller value ofκ could then be used, lowering the rejection
rate. The drawback is the additional complexity involved in
sampling from the mixture and evaluating its density func-
tion for use in calculating the acceptance probability.

5. RESULTS

A short extract of low level, decaying notes was taken from
a commercial 44.1 kHz, 16 bit recording of a piano piece. In
the original recording (∆ = 1), no distortion was audible;
requantising the signal with∆ = 50 introduced distortion
23 dB (rms) below the signal, which could be clearly heard.

The signal was split into blocks of 1024 samples, and
the sampler run for 200 iterations. Initial values werex = y
andk = 6; the remainder of the parameters were drawn
from their full conditionals.kmax was set to 50. A Monte
Carlo estimate,̂x, of the signal was made using the final
100 iterations, in which the distortion was reduced by an
average of 10 dB (rms), a clearly audible improvement.

Figure 3 shows the signal together with, for each block,
estimates ofp(k) andp(σe) and the distortion level before
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Figure 3: Quantised piano signal: signal; histograms of es-
timated marginal posterior distributions (in which darkness
represents probability); and distortion levels.
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Figure 4: Part of block 80:(top) signal and(bottom)error,
in both of which the faint line corresponds to the quantised
signal and the heavy line to the restored one.

and after restoration. Figure 4 shows part of the signal in
which the quantisation distortion was audible. It can be
seen that error signal is much smaller after restoration. For
the part shown, which is typical of the quieter blocks, a
15 dB (rms) improvement was achieved.

Model orders2 ≤ k ≤ 16 were observed in the sam-
pler output. Similar experiments using fixed model orders
showed the importance of model selection: if the model or-
der was2, the improvement was only 7.5 dB (rms) and noise
could be heard in the restored signal; if it was fixed at30,
there were disturbing ‘musical noise’ artifacts [8,§6.1.2]
where some distortion elements were being modelled as sig-
nal.

6. DISCUSSION

We have developed a technique for fitting an AR model to a
signal of which only a quantised version is available. This
required the development of a method for sampling from

truncated multivariate Gaussian distributions.
Audio signals tend to exhibit a1/f spectral shape. In

order to prevent spurious poles at high frequencies, which
have been observed, future work will investigate priors on
a(k) which incorporate this knowledge,

The signals which tend to cause granulation noise are
those which have strong sinusoidal components. In initial
experiments, sinusoid + white noise models have not per-
formed well, but adding sinusoidal basis functions to an AR
model has improved performance.
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