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ABSTRACT

Many problems in signal recovery can be formulated
as constrained convex minimization problems. In this
paper, an adaptive level set subgradient projection al-
gorithm is proposed to solve such problems with non-
di�erentiable costs. Applications to minimum total
variation signal restoration and denoising are demon-
strated.

1. INTRODUCTION

Under consideration are signal recovery problems of the
form

Find x� 2 Q such that J(x�) = inf
x2Q

J(x) , ��; (1)

where J : RN ! R is a convex function representing
an optimality criterion and Q � R

N a compact convex
set representing the constraints on the original signal.
Practically speaking, the objective J allows the user to
selectively pick a signal in the feasibility set Q. The
reader is referred to [3, 13] for general background on
signal recovery.

In recent years, interest has grown towards the use
of non-di�erentiable costs in signal recovery, e.g., `1

cost in [7] and total variation cost in [15]. Other costs
of interest include minimax costs, i.e., J = maxi2I Ji,
where (Ji)i2I is a family of convex functions. Solving
(1) with such objectives poses speci�c problems which
cannot be overcome by smooth optimization methods.
Among the problems which may arise in using smooth
optimization methods in nonsmooth problems, let us
mention in particular the failure of convergence to a
minimum and the lack of implementable stopping rules
[8]. Nevertheless, the current practice in signal recovery
is often to employ smooth algorithms and either ignore
potential problems or simply \assume" that they will
iterate in smooth regions.
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Let us denote by lev��J = fx 2 R
N j J(x) � �g

the lower level set of J at height � 2 R. Then (1) can
be written as

Find x� 2 S , Q \ lev���J: (2)

It should be noted that by virtue of the above assump-
tions, the solution set S is guaranteed to be nonempty,
closed, and convex. If �� is known, then (2) can
be solved by Polyak's subgradient projection method
[10, 12]: starting with x0 2 Q, one passes from xn to
xn+1 by the rule

xn+1 = PQ

�
xn �

(J(xn)� ��)+

ktnk2
tn

�
; (3)

where PQ is the projector onto Q and tn is a sub-
gradient of J at xn. It will be assumed throughout
that infx2RN J(x) < �� so that the subgradients at
any x 2 Q are nonzero. In such instances, one es-
sentially solves a convex feasibility problem with two
sets. Furthermore, (3) appears as a special case of
the algorithm proposed in [4] and every sequence it
produces converges to a solution. Unfortunately, �� is
usually unknown and (3) must be modi�ed into a level
set method in which the true height �� is adaptively
estimated over the course of iterations [2, 5, 6].

The goal of this paper is to propose a general adap-
tive level set subgradient algorithm based on that of
[6] for solving the signal recovery problems (1) with
non-di�erentiable costs. The algorithm is presented in
section 2 and analyzed in sections 3 and 4. Simula-
tion results are presented in section 5 and section 6
concludes the paper with some remarks.

2. ALGORITHM

The principle of the algorithm is as follows. At iteration
n, one picks a subgradient tn of J at xn 2 Q and forms
the a�ne minorant

Jn : x 7! J(xn) + htn j x� xni (4)



of J at xn. Accordingly, the half-space Hn = lev��nJn
stands for an outer approximation to the lower level
set lev��nJ . Now denote by PHn the projector onto
Hn. Then most level set subgradient methods can be
described by the recursion

xn+1 = PQ(PHn(xn))

= PQ

�
xn �

(J(xn)� �n)
+

ktnk2
tn

�
; (5)

where (�n)n�0 is constructed so as to approach �
� and

�+ = maxf0; �g. The construction of the sequence
(�n)n�0 is detailed below.

Algorithm 1

Step 0. Fix x0 2 Q, � > 0, and set ��0 < ��,
�+�1 = +1, and n = 0.

Step 1. Set �+n = minfJ(xn); �
+
n�1g.

Step 2. Set �n = (��n + �+n )=2, �n = �+n � ��n .
Step 3. If �n � �, terminate.
Step 4. If Q \ lev��nJ = � is detected, go to step 6.
Step 5. Set zn = PHn(xn), xn+1 = PQ(zn), �

�
n+1 =

��n , n = n+ 1, and go to step 1.
Step 6. Set ��n+1 = �n and �n = �+n � ��n+1.
Step 7. If �n � �, terminate. Otherwise, set xn+1 =
xn, �

+
n+1 = �+n , n = n+ 1, and go to step 2.

lev��nJ with �n > ��

Q
lev���J

lev��nJ with �n < ��
S

Hn
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xn
Y
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?

Figure 1: Alternating projection scheme (5).

As illustrated in Figure 1, step 5 consists a projec-
tion onto the approximating half-space Hn followed by
a projection onto the constraint set Q. It is noted that
the iterates (xn)n�0 lie in Q.

3. ASYMPTOTIC PROPERTIES

In this section, � is the tolerance �xed at step 0 of
Algorithm 1. By construction, we have

(8n) �+n�1 � �+n = min
0�i�n

J(xi) � ��: (6)

On the other hand, for every iteration n, ��n 2 [��0 ; �
�[

and it is updated by the rule

��n+1 =

8><
>:
��n if Q \ lev��nJ 6= �

��n if Q \ lev��nJ = � is not detected

�n if Q \ lev��nJ = � is detected.

(7)

Note that the update ��n+1 = ��n + (�+n � ��n )=2 takes
place only if infeasibility is detected at step 4. Now
de�ne

(8n) Nn = fk 2 N j ��k = ��n g: (8)

Then, in view of step 2, the (possibly �nite) sequence
(�k)k2Nn is nonincreasing.

Proposition 1 [9] (8n) (9 k 2 Nn) �k < ��. Now
suppose that

(8n)(9 k 2 Nn) Q \ lev��kJ = � is detected. (9)

Then

(9n 2 N)

(
�� � ��n � �

(9 k 2 Nn) �
+

k � �� + �:
(10)

From (6) and Proposition 1, we deduce the following
convergence result.

Theorem 1 [9] Suppose that infeasibility at step 4 can
be detected. Then Algorithm 1 generates a point xn
such that jJ(xn)� ��j � �.

As will be seen shortly, infeasibility can indeed be
detected. Therefore, the above theorem states that Al-
gorithm 1 produces a signal that achieves any preset
tolerance value on the optimal value of the objective.

4. IMPLEMENTATION

The implementation of Algorithm 1 is straightforward
except for infeasibility detection at step 4. In this sec-
tion, we provide explicit schemes for its implementa-
tion.

At every iteration n, the sequence (�k)k2Nn is non-
increasing and, by Proposition 1,

(9k 2 Nn) Q \ lev��kJ = �: (11)

Unfortunately, such a k cannot be identi�ed directly
unless the sets Q and lev��nJ are simple. However,
if one knows a priori the diameter � of Q or an upper
bound  on d(x0; S), the following proposition provides
su�cient conditions for detecting infeasibility in (11).



Proposition 2 [9] At iteration n, de�ne for every k 2

Nn �
H
k = kxk�zkk

2, �Qk = kzk�xk+1k
2, and �k = �Hk +

�Qk . Then, for any (n1; n2) 2 N2
n such that n1 � n2,

Q \ lev��n2J = � if any of the following holds:

(i)
Pn2

k=n1
�k > �2;

(ii)
Pn2

k=n1
�k > 2;

(iii)
Pn2

k=n1
�k > 2kxn1 � xn2+1k � kxn1 � xn2+1k

2.

Although the conditions stated in Proposition 2 are
not necessary, they can be used to detect (11) by virtue
of the following proposition.

Proposition 3 [9] If Nn is in�nite then
P

k2Nn
�Hk =

+1 and
P

k2Nn
�k = +1.

Note that if (11) occurs at iteration k and is not de-
tected at that iteration, it will occur again at itera-
tion k + 1. Now, if infeasibility is not detected at
any iteration beyond k, Nn will be in�nite as a con-
sequence of (7). However, by Proposition 3, as Nn

grows the sums in Proposition 2(i)-(iii) will become
arbitrarily large and therefore infeasibility will be de-
tected. Since Nn can easily be constructed, the condi-
tions given in Proposition 2 for detecting infeasibility
are implementable.

When using (i) or (ii) in Proposition 2 to detect
infeasibility at step 4, Algorithm 1 turns out to be very
similar to that proposed in [5]. The di�erence is that we
use
P

k2Nn
�k, as opposed to

P
k2Nn

�Hk in [5], which
allows us to detect infeasibility sooner.

5. APPLICATION TO MINIMUM TOTAL

VARIATION SIGNAL RECOVERY

5.1. Generalities

The total variation of a 2-dimensional analog signal x
de�ned on an open set 
 � R

2 is

JTV (x) =

Z



jrx(!)jd!; (12)

where j � j denotes the Euclidean norm in R
2 [1]. The

discrete counterpart of (12) can be de�ned as

JTV (x) =
X
i;j

p
(xi;j � xi;j+1)2 + (xi;j � xi+1;j)2;

(13)

where xi;j denotes the (i; j) component of x 2 R
N�N .

It is easy to show that JTV as de�ned by (13) is a
non-di�erentiable convex function on R

N�N . Unlike

energy or Laplacian costs, such costs do not impose a
strong smoothness condition and they are therefore of
interest in the recovery of sharp signals. They have
in particular been applied with some success to the
recovery of blocky signals (see [15] and the references
therein).

Consider the standard linear degradation model

y = Tx+ u; (14)

where y and u are respectively the observed signal and
the additive noise, and T an N � N matrix. Under
certain statistical hypotheses on the noise vector u, we
can de�ne the constraint set [3, 14]

Q = fx 2 R
N j kTx� yk2 � �g: (15)

One is then led to the problem formulation (1), consist-
ing of �nding a signal x� of minimum total variation
and consistent with the observed data and the noise
information, i.e,

Find x� 2 Q such that JTV (x
�) = inf

x2Q
JTV (x): (16)

This problem can be solved in the sense of Theorem 1
by Algorithm 1.

In [11], the method used to solve (16) is akin to a
gradient projection method in which iterates are per-
turbed to avoid points of non-di�erentiability. This ap-
proach leads to a straightforward numerical implemen-
tation but it lacks a sound mathematical basis, and
exact convergence properties such as those stated in
Theorem 1 do not seem achievable.

In [15], (16) is reformulated as a penalized prob-
lem of the form (actually, JTV was slightly modi�ed to
avoid non-di�erentiability issues)

Find arg min
x2RN�N

fJTV (x) + �(kTx� yk2 � �)g: (17)

Of course, problems (16) and (17) are not equivalent,
unless � is a Kuhn-Tucker coe�cient for the former.
In [15], the choice of � is guided by heuristic rules and
therefore the properties of the solutions to (17) are not
clear.

5.2. Example of Signal Restoration

As illustrated in the following example, total variation
works quite well as a minimizing criterion for restor-
ing \blocky" signals even when the level of the noise is
high. The degraded signal y shown in Figure 4 is ob-
tained by convolving the point spread function shown
in Figure 2 with the original signal x shown in Fig-
ure 3 and addition of zero mean white Gaussian. The
signal-to-noise ratio is 14.94dB.
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Figure 2: Point spread function.
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Figure 3: Original signal.
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Figure 4: Degraded signal.
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Figure 5: Restored signal.

Algorithm 1 generated the signal shown in Figure
5 and it can be seen that the \block" features of the
original signal are fairly well restored.

5.3. Example of Signal Denoising

The noisy signal shown in Figure 6 is obtained by
adding zero mean white Gaussian noise to the origi-
nal signal x shown in Figure 3. The signal-to-noise
ratio is 9.57dB. Here T is the identity matrix and the
constraint set Q in (15) becomes a ball. The denoised
signal produced by Algorithm 1 is shown in Figure 7.

0
10

20
30

40
50

60

0
10

20
30

40
50

60

0

50

100

150

200

250

Figure 6: Noisy signal.
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Figure 7: Denoised signal.

6. CONCLUSION

A general algorithm has been proposed for solving con-
strained convex signal recovery problems with non-
di�erentiable costs. The algorithm has been shown to
produce a signal that achieves any preset tolerance level
on the optimal value of the objective. Unlike many
methods currently in use in nonsmooth signal recov-
ery, it produces a solution with known properties. As
regards to its asymptotic behavior, let us note that as
��n approaches the optimal value �� the number of iter-
ations required to detect infeasibility increases. There-
fore it is important to assign to the tolerance parameter
� a realistic value; too small a value will increase the
number of iterations with no practical improvement on
the solution.

As with any projected (sub)gradient method, the
constraint set should be simple enough so that the pro-
jection onto it can be implemented at reasonably low
cost. Extending Theorem 1 to cases in which PQ(zn)
is approximately computed at step 5 would make the
incorporation of a wide range of constraints numeri-
cally viable. Another direction of research is to explore
the possibility of establishing tighter bounds than those
proposed in Proposition 2 in speci�c problems. This
would make the algorithm faster by allowing for early
infeasibility detection at step 4.
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