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ABSTRACT

ADAPTIVE CONTROL OF A ONE-LEGGED

HOPPING ROBOT THROUGH DYNAMICALLY

EMBEDDED SPRING-LOADED INVERTED

PENDULUM TEMPLATE

İsmail Uyanık

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Ömer Morgül

August 2011

Practical realization of model-based dynamic legged behaviors is substantially

more challenging than statically stable behaviors due to their heavy dependence

on second-order system dynamics. This problem is further aggravated by the dif-

ficulty of accurately measuring or estimating dynamic parameters such as spring

and damping constants for associated models and the fact that such parameters

are prone to change in time due to heavy use and associated material fatigue.

In the first part of this thesis, we present an on-line, model-based adaptive control

method for running with a planar spring-mass hopper based on a once-per-step

parameter correction scheme. Our method can be used both as a system identifi-

cation tool to determine possibly time-varying spring and damping constants of a

miscalibrated system, or as an adaptive controller that can eliminate steady-state

tracking errors through appropriate adjustments on dynamic system parameters.

We use Spring-Loaded Inverted Pendulum (SLIP) model, which is the mostly

used, effective and accurate descriptive tool for running animals of different sizes
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and morphologies, to evaluate our algorithm. We present systematic simulation

studies to show that our method can successfully accomplish both accurate track-

ing and system identification tasks on this model. Additionally, we extend our

simulations to Torque-Actuated Dissipative Spring-Loaded Inverted Pendulum

(TD-SLIP) model towards its implementation on an actual robot platform.

In the second part of the thesis, we present the design and construction of a one-

legged hopping robot we built to test the practical applicability of our adaptive

control algorithm. We summarize the mechanical, electronics and software design

of our robot as well as the performed system identification studies to calibrate the

unknown system parameters. Finally, we investigate the robot’s motion achieved

by a simple torque-actuated open loop controller.

Keywords: Spring-Mass Hopper, Adaptive Control, System Identification,

Legged Locomotion, Spring-Loaded Inverted Pendulum (SLIP), Hybrid System
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ÖZET

TEK BACAKLI ZIPLAYAN BIR ROBOTUN DINAMIK

OLARAK GÖMÜLMÜS. YAYLI TERS SARKAC. S.ABLONU İLE

ADAPTIF KONTROLÜ

İsmail Uyanık

Elektrik ve Elektronik Mühendisliḡi Bölümü Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Ömer Morgül

Ağustos 2011

Model tabanlı dinamik bacaklı davranışların pratik olarak gerçeklenmesi ikinci

derece sistem dinamiklerine aşırı bağlılıkları nedeniyle statik kararlı davranışlara

göre oldukça zordur. Bu sorun ilgili modellerde yer alan yay ve sönümlenme

sabiti gibi dinamik parametreleri tam olarak ölçmekteki zorluklar ve bu parame-

trelerin malzeme yorulması ve aşırı kullanım sonucunda zamanla değişme eğilimi

göstermesi nedeniyle daha kötü bir hal almaktadır.

Bu tezin ilk bölümünde, adım başına bir kez parametre güncelleme mantığına

dayalı olarak düzlemsel bir yay-kütle zıplayanı koşusu için çevrimiçi, model

tabanlı bir adaptif kontrol metodu sunulmaktadır. Bu metot gerek kalibre

edilmemiş bir sistemin muhtemelen zamanı bağlı yay ve sönümlenme sabitlerini

belirleyen bir sistem tanımlama aracı olarak, gerekse dinamik sistem parame-

treleri üzerinde uygun ayarlamaları yaparak kararlı hal takip hatalarını gideren

bir adaptif kontrolcü olarak kullanılabilir.

Algoritmayı değerlendirebilmek için çok farklı boyut ve morfolojideki koşan

canlıları etkili ve güvenilir bir biçimde tanımlayan ve çokça kullanılan Yaylı
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Ters Sarkaç (YTS) modeli kullanılmaktadır. Metodun hem güvenilir takip hem

de sistem tanımlama görevlerini bu model üzerinde başarılı bir şekilde yapa-

bildiğini göstermek amacıyla sistematik simülasyon çalışmaları sunulmaktadır.

Ayrıca, metodun fiziksel bir robot platformunda gerçeklenmesine adım olarak

simülasyon çalışmaları tork tahrikli tüketimli yaylı ters sarkaç (TT-YTS) mode-

line genişletilmiştir.

Tezin ikinci bölümünde adaptif kontrol algoritmasının pratik olarak uygulan-

abilirliğini test etme amaçlı üretilen tek bacaklı zıplayan robotun tasarım ve

üretimi anlatılmaktadır. Robotun mekanik, donanımsal ve yazılımsal tasarımı

ile birlikte bilinmeyen sistem parametrelerini kalibre etme amaçlı gerçekleştirilen

sistem tanımlama çalışmaları da özetlenmektedir. Son olarak, robotun basit tork

tahrikli açık döngü kontrolcüsüyle ortaya çıkan hareketi sorgulanmaktadır.

Anahtar Kelimeler: Yay-Kütle Zıplayanı, Adaptif Kontrol, Sistem Tanımlama,

Bacaklı Hareket, Yaylı Ters Sarkaç (YTS), Melez Sistem
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Chapter 1

INTRODUCTION

This thesis concerns the design of model-based adaptive control methods for run-

ning with planar one-legged hopping robots, as well as the development of such a

robot platform. In contrast to existing control algorithms which assume perfect

knowledge of dynamic system parameters, our algorithm tries to achieve high

tracking accuracy through on-line estimation of these parameters. In addition to

that, we also describe the design and construction of a mechanical spring-mass

hopper to illustrate the practical applicability of our algorithms under different

scenarios, aiming to show that our approach not only works in simulation, but

also allows realization in a physical robot platform.

1.1 Motivation and Background

The utility of legged morphologies and associated dynamic behaviors for robust

and efficient locomotion across rough terrain has long been established [2, 3].

One of the primary advantages of legged designs is that a legged robot can

reach a great portion of the earth’s land mass unlike other wheeled and tracked

platforms. They do not suffer from restrictions in directions forces can be applied

1



to the robot body [4], an inevitable problem experienced by wheeled platforms.

In addition to that, legs can also be used as sensors or manipulators like animals

do in nature. By using legs, it may be possible to sense the position, moveability

and structure of objects in the environment. An example use of legs as sensors,

in which haptic information from the robot leg is used to detect the weight and

moveability of an object, was illustrated in [5].

Legged robots also admit challenging locomotory behaviors which are prob-

lematic or sometimes impossible for wheeled or tracked platforms. For instance,

RISE, a biologically inspired hexapedal climbing robot, is able to locomote both

on level ground and different vertical surfaces such as walls and trees [6, 7]. An-

other challenging environment for robots is sandy terrain, wherein wheeled robots

usually get stuck. However, SandBot, a bioinspired hexapedal robot, can traverse

over sand with its typical leg design [8].

Based on aforementioned advantages, one can intuitively conclude that legs

are better than wheels for robotic platforms due to their wider range of envi-

ronment accessibility, their possible usage as sensors and their wide range of lo-

comotory behaviors in scansorial environments. Despite these advantages, there

are also substantial difficulties associated with legged robots such as the control

problem, gait generation and locomotion which are much easier to handle with

wheeled robots. One of the main reasons behind these difficulties is that it is

not possible to find a general mathematical model describing numerous legged

morphologies with different sizes. Consequently, the main focus of this thesis is

limited only to the control of monopedal robot platforms. Since we constrain

ourselves to monopedal robots, we will be using the well-known Spring-Loaded

Inverted Pendulum (SLIP) model (see Fig. 1.1) which is frequently used as a

fundamental template to analyze and estimate animal locomotion.
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Figure 1.1: The Dissipative Spring-Loaded Inverted Pendulum (SLIP) model.
Dashed curve illustrates a single stride from one apex event to the next, defining
the return map Xn+1 = f(Xn,un).

Nevertheless, despite the discovery of simple mathematical models [9–11] and

associated analytical solutions [12–14] that can accurately describe biological run-

ners and support the design of hierarchical controllers for complex legged mor-

phologies [15–18], physical realization of dynamic legged behaviors has mostly

been based on intuition and manual tuning [3, 19–21] with a few notable ex-

ceptions [22, 23]. More recently, however, there has been increasing interest in

using model-based analysis and control methods in this context [24, 25], with

experimental success for some behaviors [26].

However, even though dynamic models for which we have a sufficiently good

analytic understanding can support physically relevant controller designs, the

measurement and estimation of particularly the dynamic parameters, such as

spring and damping constants for flexible components of a robotic platform, is

still a challenging problem. This problem is further aggravated by the possibly

time-varying and unpredictable nature of these parameters for autonomous plat-

forms that may remain operational for extended durations of time. Fortunately,

this issue is not confined to the control of legged locomotion and received con-

siderable attention from the adaptive control community [27, 28]. Motivated by
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work in this area, this thesis presents a new model-based adaptive control method

for running with the SLIP template and its variants, emphasizing on-line esti-

mation of unknown or miscalibrated dynamic system parameters. The adaptive

control method we use in this study is a variant of the model reference adaptive

control (MRAC a.k.a. MRAS) method in which the desired performance is ex-

pressed in terms of a reference model. The objective of the MRAC is to adjust

the reference model parameters such that the model response converges to the

actual system response [27, 29].

1.2 Existing Work

In contrast to the approach mentioned in the previous section, existing research

on adaptive control of legged locomotion almost exclusively focuses on how cyclic

behaviors of the mechanical locomotor dynamics can be tuned through their cou-

pling with independently running internal clocks (Central Pattern Generators,

CPGs) whose dynamics can then be controlled at lower bandwidth [30–33]. These

methods mirror established principles from neurobiology, where groups of neu-

rons in simple organisms were found to remain functional in isolation, producing

cyclic control signals even without any high-level control authority [34]. Sim-

ilar to controller designs based on neural networks and learning [35, 36], such

approaches are advantageous in their ability to operate without accurate mod-

els, increasing their robustness under unknown environmental conditions such

as rough terrain. On the other hand, their structure is often not suitable for

incorporating accurate mathematical models when they are in fact available.

The very first experimental studies on actively balanced hopping robots be-

gan with Matsuoka [37] who built a planar one-legged hopping robot to study

repetitive hopping in human. However, Raibert led the field of dynamically sta-

ble legged locomotion by using SLIP as a basic dynamic model for hopping robots
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[19]. He built many running robots with different structures and number of legs

based on the SLIP model, starting with a planar one-legged machine [38]. The

important thing about the Raibert’s hoppers is that he uses a modified version

of the control algorithm developed for the original one-legged machine in all of

his robots. In addition to Raibert’s hoppers, Papantoniou [39, 40] also uses a

control algorithm based on Raibert’s controller in his planar hopper actuated by

two electric motors.

Sato also built a one-legged hopping machine, the Sato Hopper [41], to inves-

tigate the feasibility of the SLIP model in a robot platform with a spring in the

leg and only one actuator at the hip. He achieved experimental validation of the

SLIP model and demonstrated a robust hopping robot with only one actuator

at the hip. The ARL Monopod I - II are the two other one-legged machines to

study the energetics of autonomous dynamically stable legged locomotion based

on Raibert’s control laws [42, 43]. For example, the ARL Monopod I was the

fastest electrically actuated legged robot to date with its top running speed of

1.2 m/s. Among all these robots, the Bow Leg hopper has the closest design to

the SLIP model with its actuated compliant leg [44–46]. The springy leg of the

Bow Leg Hopper is a bow-shaped fiberglass sheet and it is pre-loaded during the

flight phase to store energy. Then, the leg is released to inject the stored energy

to the system for the control purposes.

1.3 Methodology

As discussed in Section 1.1, the measurement and estimation of dynamic system

parameters is still a challenging problem. Therefore, the assumptions of perfect

parameter knowledge and time-invariant parameter values can be quickly vio-

lated in actual robotic platforms. In the first part of this thesis, we introduce

5



a novel adaptive control method that extends on one of the recent control algo-

rithms for leg-length controlled SLIP model and achieves high accuracy even for

highly inaccurate initial system parameter estimates.

k

d

Xn
Xn+1

f

y

z

Figure 1.2: Impact of miscalibrated dynamic parameters on SLIP trajectory
predictions. Arrows indicate directions of change in the apex as a result of
increasing k and d. The curve in the middle shows the unperturbed trajectory
while the dotted curves show trajectories with different parameter values.

Our adaptive control method is based on recently proposed analytic approx-

imations to SLIP dynamics [14]. Similar to previous studies, we use a once-per-

step deadbeat control strategy that relies on the inversion of an approximate

return map for this system. However, unlike previous controllers which assume

perfect knowledge of dynamic system parameters (spring and damping constants

in particular), and ignore the effects of miscalibrated parameters illustrated in

Fig. 1.2, our adaptive controller explicitly considers and compensates for such

errors. In order to ensure the realization of our algorithm in an actual robotic

platform, we also extend this algorithm to the torque actuated SLIP (TD-SLIP)

model described in [1]. We present systematic simulation studies to show that

our method performs well in both of these models.
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Finally, we designed and built a planar spring-mass hopper platform based on

the SLIP model whose details are given in Chapter 4. Since the measurement of

ground truth robot state is very important for motion control and planning, we

also designed a high accuracy measurement system in the form of a planarizer.

1.4 Contributions

The primary contribution in this thesis is a novel adaptive control algorithm

to achieve accurate gait control and system identification for running with a

planar hopper (SLIP) model. Our studies show that model-based estimation

of leg spring and damping constants can either be used to eliminate tracking

errors or to achieve accurate system identification. We provide simulation results

in Chapter 3, systematically evaluating the performance of our method in the

presence of parameter and modeling errors.

In addition to this primary contribution, our algorithm also eliminates steady-

state tracking error resulting from the approximate nature of available return

maps. Even with perfect knowledge of dynamic system parameters, there is al-

ways a steady-state tracking error since available return maps describing SLIP

trajectories are all approximate due to the non-integrability of actual SLIP tra-

jectories. Our algorithm compensates such steady-state errors by making proper

adjustments on estimated system parameters.

The final contribution in this thesis is the design and construction of a planar

spring-mass hopper robot platform. The leg design of our hopper tries to mimic

the SLIP template. In addition to this hopper robot, the planarizer system

designed in this thesis can also be used for testing different robot platforms.
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1.5 Organization of Thesis

In the first part of the thesis, we start in Chapter 2 with the SLIP model and

an overview of two existing approximate stance maps for both the SLIP and

TD-SLIP models. In Section 3.1, we propose a novel adaptive control algo-

rithm for running with the SLIP template to increase the tracking accuracy and

system identification performance in the presence of a parameter uncertainty.

Subsequently, in Section 3.2 and Section 3.3, we present the results of systematic

simulation studies we performed to evaluate the performance of our algorithm

on both the SLIP and TD-SLIP models.

The second part of this thesis begins in Chapter 4 with a summary of the

design and construction steps of the one-legged hopper robot we built to test the

practical applicability of our adaptive control algorithm on the actual robotic

platforms. Section 4.1 details the mechanical, electronics and software design

of this robot platform. Then, in Section 4.2, we present the manual system

identification studies we performed to calibrate some system parameters of the

robot, meaning the spring and damping constant and the effective robot mass at

the hip. Then, Section 4.3 details the torque-actuated open loop controller we

implemented for our robot and illustrates an example running performance with

necessary motion analysis. Finally, in Chapter 5, we conclude the thesis with a

review of our work and a summary of open research topics.
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Chapter 2

BACKGROUND: THE

PLANAR SPRING-MASS

HOPPER

This chapter introduces necessary background for the spring-mass hopper as

well as a summary of the two important control methods on this model and their

analytical approximate maps to the stance trajectories.

2.1 The SLIP Model

The discoveries in biomechanics research revealed that the Spring-Loaded In-

verted Pendulum (SLIP) model can be used as a descriptive metaphor for run-

ning animals [47]. Based on this fact, the SLIP model was established as a simple

and accurate descriptive tool to analyze dynamic locomotion in running animals

of widely differing sizes and morphologies [48–50].

Subsequent results from several one-legged hopping platforms based on the

SLIP model such as Raibert’s hoppers [19], the ARL-Monopods [42], the Bow-Leg
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design [44] and the BiMasc [51] platform strengthened the idea of its use an an

explicit control target. However, the fact that the stance dynamics of the SLIP

model under the effect of gravity are nonintegrable [52] led to the development

of analytical approximations to its nonlinear model dynamics to support the

analysis of associated behaviours and the design of different controllers [10, 12,

13, 15, 53].

This section continues with the basic SLIP template and introduces its dy-

namics with the associated terminology.

2.1.1 The SLIP Template
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Figure 2.1: SLIP locomotion phases (shaded regions) and transition events
(boundaries)

The SLIP model, illustrated in Fig. 1.1, consists of a point mass attached to

a massless leg with a linear spring k and viscous damping d. During running,

this model alternates between stance and flight phases with the toe fixed on the

ground during the former and the body following a ballistic trajectory during

the latter. Moreover, the flight phase is divided into two subphases, ascent and

10



descent according to the vertical velocity. Similarly, the stance phase is also split

into two subphases as compression and decompression according to the sign of

the rate of change of the leg length. Fig. 2.1 illustrates a single stride from an

apex state and labels all relevant phases, subphases and transition events whose

properties will be explained shortly in the next paragraphs. Furthermore, Table

2.1 details the notation associated with the basic SLIP model. Note that, some

derivations use non-dimensional parameters to eliminate redundant parameters.

These non-dimensional parameters are represented with a dash sign on them.

The transformation between the original and non-dimensional parameters are

briefly defined in the places where they are first mentioned. More details about

these transformations can be found in [1].

Flight : The period when the robot has no contact with the ground. The body

follows a simple ballistic trajectory in this phase.

Ascent : The subperiod when the robot moves upwards, meaning that the

robot has a decreasing positive vertical velocity.

Descent : The subperiod when the robot moves downwards, meaning that

it accelerates in the negative direction for the vertical velocity and

increases in magnitude.

Stance : The period when the toe of the robot is in contact with the ground.

As told before, the system dynamics in this phase includes nonintegrable

terms due to the gravitational acceleration.

Compression : The subperiod when the rate of change of leg length is

negative, meaning that the spring is being compressed and stores en-

ergy.

Decompression : The subperiod when the rate of change of leg length is

positive, meaning that the spring is being decompressed and releases

energy.
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Table 2.1: Notation associated with the SLIP model used throughout the thesis

SLIP States, Event States and Control Inputs

ρ, θ Leg length and leg angle

ρ̇, θ̇ Leg compression and swing rates

R Body state vector in polar coordinates, R = [θ θ̇ ρ ρ̇]T

pθ Angular momentum around the toe
ρtd, θtd, ttd Touchdown leg length, angle and time
ρb, θb, tb Bottom leg length, angle and time
ρlo, θlo, tlo Liftoff leg length, angle and time

y, z Horizontal and vertical body positions
ẏ, ż Horizontal and vertical body velocities
za, ẏa Apex height and velocity
X Body state vector in cartesian coordinates, X = [y ẏ z ż]T

τ Hip torque command during stance

SLIP Parameters

m, g Body mass and gravitational acceleration
ρo Leg rest length
k, d Actual values of spring and damping constants

k̂, d̂ Estimated values of spring and damping constants
Fg(x) Ground function. It returns the ground height for a given position x
E Total mechanical energy

Return maps

f Exact plant model for SLIP and TD-SLIP

f̂ Analytical approximate solution for SLIP and TD-SLIP
t
af Apex to touchdown map
b
tf Touchdown to bottom map
l
bf Bottom to liftoff map
a
l f Liftoff to apex map

In addition to these phases, our model also includes several transition events

triggering the phase changes during locomotion. The accurate detection of these

events is very crucial for simulation or actual locomotion since they strongly

impact the locomotion characteristics. Now, we focus on general characteristics

of these events.

Apex : This event triggers the state change from the ascent to the descent

subphase during flight. This event occurs when the SLIP body reaches its

maximum height with the maximum gravitational potential energy. It can

be detected by checking the zero crossing of the following function during
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the flight phase:

ha(t) := ż(t), (2.1)

Touchdown : This event triggers the state transition between flight and stance

phases. It occurs when the robot touches the ground while in descent.

This event can be detected by checking the zero crossing of the following

function when ż < 0:

htd(t) := z(t)− (ρtdcos(θtd) + Fg(ytd)), (2.2)

Bottom : This event triggers the transition from compression to decompression

during stance. This event occurs when the spring potential energy reaches

its maximum value and can be detected by checking the zero crossing of

the following function during stance:

hb(t) := ρ̇(t), (2.3)

Liftoff : This event triggers the stance to flight transition. This event occurs

when the toe of the robot leg leaves the ground. This event can be detected

by checking the zero crossings of the following function when ż > 0:

hlo(t) := −k(ρ(t)− ρo)− dρ̇(t), (2.4)

As it can be understood from the transition event definitions, the highest

point in the flight phase is defined as the apex point for each stride, with the

associated state of the system for the nth stride defined as

Xn := [ zn, ẏn ]T . (2.5)

We will also find it convenient to collect relevant dynamic parameters of the

system in a single vector as

p := [ k, d ]T . (2.6)
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2.1.2 SLIP Dynamics

As previously stated, the SLIP model has hybrid locomotion characteristics which

requires separate consideration of flight and stance dynamics. This section pro-

vides the equations of motion for all phases of the SLIP model. These equations

will subsequently be converted into non-dimensional coordinates to simplify fur-

ther analysis.

Flight Dynamics

The SLIP model has a point-mass to represent the whole robot body. Dur-

ing flight, this point-mass follows a ballistic flight trajectory under the effect of

gravity. The equations below show the state vector X is defined as

X := [ y, ẏ, z, ż ]T , (2.7)

and the flight dynamics are

Ẋ := [ ẏ, 0, ż, −g ]T , (2.8)

Stance Dynamics

During the stance phase, the robot leg is assumed to be rotating around a fric-

tionless revolute joint fixed at the contact point until liftoff occurs. Since the

body mass follows an arc-like trajectory, polar coordinates are best suited for the

derivation of the stance dynamics. The Lagrangian equation of the SLIP model

during the stance phase in polar coordinates can hence be written as

L =
m

2
(ρ̇2 + ρ2θ̇2)− k

2
(ρo − ρ)2 −mgρ cos(θ). (2.9)

Then, the equations of motion can be derived as

mρ̈ = mρθ̇2 + k(ρo − ρ)−mg cos(θ), (2.10)

0 =
d

dt
(mρ2θ̇) +mgρ sin θ. (2.11)
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Using the state vector, R, defined in polar coordinates as

R :=
[

θ, θ̇, ρ, ρ̇
]T

, (2.12)

as well as (2.10) and (2.11), the stance dynamics in polar coordinates are given

by

Ṙ =



















θ̇

−g sin(θ)
ρ

− 2ρ̇θ̇
ρ

ρ̇

k(ρo−ρ)
m

+ ρθ̇2 − g cos(θ)



















. (2.13)

2.1.3 Control of SLIP Locomotion

In this section, we focus on the control problem for the SLIP model and briefly

explain different possible control modes. Control of SLIP locomotion generally

seeks to regulate apex states of the model during locomotion through discrete

control inputs at each stride.

Equation (2.7) defines the SLIP state X in cartesian coordinates. Now, given

the control input vector u (which will be specified shortly), a Poincaré section

at apex with ż = 0 enables us to define a discrete apex return map as

Xn+1 = fp(Xn,un) . (2.14)

where the dependence of the map on the dynamic parameters p is explicitly

shown.

Unfortunately, the stance dynamics of the SLIP model are not integrable in

closed form, making it impossible to find exact analytic expressions for the apex

return map [52]. Consequently, we use analytic approximations to model the

actual return map and define the new approximate return map as

X̂n+1 = f̂p(Xn,un) . (2.15)
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Now, suppose that we want to reach the desired apex state,

X∗ =





ẏ∗a

z∗a



 . (2.16)

The control objective is to identify the sequence of control inputs u by using the

above return map to asymptotically converge to the desired apex state, X∗.

There are two main control parameters that are common to all controllers

based on the SLIP model; the touchdown leg angle θtd and the amount of change

in the total mechanical energy ∆E. The implementation of the control of touch-

down leg angle, θtd, is relatively simple since the only goal is to make sure that

the leg reaches the desired leg angle at the instant of touchdown. In contrast,

energy control of SLIP hopping can be achieved with a variety of different control

inputs [1, 10, 15, 44]. In the course of this thesis, we will mainly focus on the two

following control methods.

Leg Length Control - LLC : This control mode assumes the presence of a

second actuator which controls the length of the robot leg during flight.

This mode is generally used in the systems which assume fixed leg stiffness

during the locomotion. The main principle in this control mode is to control

the total mechanical energy in the system through leg length, meaning leg

compression. For instance, it is possible to inject energy into the system

by choosing touchdown leg length smaller than the liftoff leg length. This

way, the stored energy in the leg spring can be transferred to the system

in an effective way. The BowLeg hopping robot and the ParkourBot are

example physical robot platforms to use this principle [44, 45, 54].

Torque Actuated Control - TAC : Most legged robot platforms, including

the Scout family of quadrupeds [55], the RHex hexapod [20] as well as a

number of monopedal platforms [41, 56] use only a single, rotary actuator

for each leg (see Fig. 2.2 for an illustration) making it impossible to use
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LLC type control modes. In this type of robots, a torque actuation at the

hip is used to control the mechanical energy in the system. For example,

the TD-SLIP model of [1] and the CT-SLIP model of [57] use only torque

actuation to inject energy into the system.

k d

ρ

θ

y

z

τ

Figure 2.2: A torque actuated SLIP model with a single rotary actuator at the
hip (reprinted with permission from [1]).

Note that, there are several other ways of controlling the total mechanical

energy in a SLIP-like system such as the Leg Stiffness Control (LSC) and Two-

Phase Stiffness Control (TPSC). However, LLC and TAC are the two control

modes used in the SLIP and TD-SLIP models on which we build our adaptive

control strategy. The following section describes the analytical approximate re-

turn maps of these models derived in [14] and [1], respectively.

17



2.2 Analytical Approximate Maps for SLIP and

TD-SLIP Models

Before full dynamic analysis of the SLIP locomotion became available, previous

research implemented simple controllers based on intuition [58] or the interpola-

tion of previously observed gaits [59]. Even though these methods exhibit good

stabilization performance, their implementation was expensive and they lacked

tracking accuracy. It is clear that we need a better, analytical understanding

of the return map in (2.14) to design high performance controllers for SLIP

locomotion. As mentioned in Section 2.1.3, analytic solutions to the flight dy-

namics of the SLIP model are easy to obtain but stance dynamics under the

effect of gravity are non-integrable [52]. Therefore, the best solution is to use

analytical approximate maps for the stance phase. Currently, there are several

available analytical approximate stance maps that support the analysis of SLIP

and SLIP-like locomotion and the design of associated controllers in literature

[10, 12, 13, 15, 53].

The general idea behind approximate stance maps is the estimation of the

next apex state, Xn+1, from the current apex state, Xn, by using the chosen con-

trol input u. The following sections will discuss the approximate analytical map

for the SLIP and TD-SLIP models by Ankarali et. al. [1, 14]. The reason why

we choose Ankarali’s approximations in our studies is that they can successfully

incorporate the effect of damping which is inevitable in actual robotic platforms.

18



2.2.1 Approximate Analytic Solutions to Stance Trajec-

tories of the Passive SLIP with Damping

This section briefly reviews the approximation method used in [14]. Recall from

(2.10) and (2.11) that the equations of motion for the stance phase of SLIP in

polar coordinates are given by

mρ̈ = mρθ̇2 + k(ρo − ρ)−mg cos(θ)

0 =
d

dt
(mρ2θ̇) +mgρ sin θ.

First of all, a non-dimensionalization is used to eliminate redundant param-

eters and to provide an efficient way to interpret the approximation results.

Redefining time as t̄ := t/λ where λ :=
√

ρo/g, scaling all distances with the

spring rest length ρo, dimensionless stance dynamics are given as

¨̄ρ = ρ̄ ˙̄θ
2
− κ(ρ̄− 1)− c ˙̄ρ− cos(θ̄), (2.17)

¨̄θ = (−2 ˙̄ρ ˙̄θ + sin(θ̄))/ρ̄. (2.18)

Note that (d/dt̄)n = λn(d/dt)n and all time derivatives are with respect to the

newly defined, scaled time variable.

Rearranging Eq. (2.18) gives a more convenient form for the angular dynamics

0 =
d

dt̄
(ρ̄2 ˙̄θ)− ρ̄ sin θ̄ . (2.19)

Assumption 1. If the angular span of the leg ∆θ̄ is assumed to be sufficiently

small, meaning that the leg remains close to the vertical throughout the entire

stance phase as in [12], the effect of gravity can be linearized by assuming cos θ̄ ≈

1 and sin(θ̄) ≈ 0. �

Under this assumption, Eq. (2.19) simplifies to

d

dt̄
(ρ̄2 ˙̄θ) = 0 . (2.20)
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Now, the resulting conversation of the angular momentum pθ̄ := ρ̄2 ˙̄θ reduces the

radial dynamics of (2.17) to

¨̄ρ+ c ˙̄ρ+ κρ̄− pθ̄
2/ρ̄3 = −1 + κ . (2.21)

Remark 1. Assumption 1 may cause a misinterpretation that the angular mo-

mentum is conserved during the stance phase which is not true most of the times

in real life. This analytical approximate map [14] also considers the effect of grav-

ity to the stance phase to correct the deviations in angular momentum. Since we

did not use this compensation in our adaptive control algorithm, we will not give

the details of gravity correction. The detailed information about this process can

be found in [14, 53].

Unfortunately, even these reduced dynamics would not result in an analytic

solution for the leg length due to the high order terms.

Assumption 2. If the relative spring compression is assumed to be sufficiently

small with |1− ρ̄| ≪ 1, the nonlinear term 1/ρ̄3 in (2.21) can be approximated

by a Taylor series expansion around ρ̄ = 1 to yield

1/ρ̄3
∣

∣

ρ̄=1
≈ 1− 3 (ρ̄− 1) +O((ρ̄− 1)2). � (2.22)

This assumption is valid unless the maximum leg compression exceeds the

75% of the rest length, which is true for must running behaviors. Nevertheless,

by using the Taylor series expansion in Eq. (2.22), Eq. (2.21) is simplified to

¨̄ρ+ c ˙̄ρ+ (κ+ 3p2θ̄)ρ̄ = −1 + κ+ 4p2θ̄ . (2.23)

In order to write this equation in the form of a second order ordinary differential

equation, which can easily be solved analytically, some new system parameters

are defined such as the natural frequency, ω̂0 :=
√

κ + 3p2
θ̄
, the damping ratio,
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ξ := c/(2ω̂0), the damped frequency, ωd := ω̂0

√

1− ξ2 and the forcing term

F := −1 + κ + 4p2
θ̄
. The new form of Eq. (2.23) with newly defined parameters

is given below

¨̄ρ+ 2ξω̂0 ˙̄ρ+ ω̂2
0 ρ̄ = F . (2.24)

Assuming ξ < 1, this equation has a solution of the form

ρ̄(t) = e−ξω̂0t(A cos(ωdt̄) +B sin(ωdt̄)) + F/ω̂2
0 , (2.25)

where A and B are determined by touchdown states as

A = ρ̄td − F/ω̂2
0 , (2.26)

B = ( ˙̄ρtd + ξω̂0A)/ωd . (2.27)

The radial velocity can be derived with a simple differentiation as

˙̄ρ(t) = −M e−ξω̂0t̄(ξω̂0 cos(ωdt̄ + φ) + ωd sin(ωdt̄ + φ)) , (2.28)

where M :=
√
A2 +B2 and φ := arctan(−B/A). By further manipulations, the

simplest form of the radial motion can be derived as

ρ̄(t̄) = M e−ξω̂0t̄ cos(ωdt̄+ φ) + F/ω̂2
0 , (2.29)

˙̄ρ(t̄) = −Mω̂0 e
−ξω̂0t̄ cos(ωdt̄ + φ+ φ2) . (2.30)

where φ2 := arctan(−
√

1− ξ2/ξ).

Equations (2.29) and (2.30) gives an analytical approximation to the radial

trajectory of the SLIP model. To derive an analytic solution to the angular

trajectory, we use the constancy of angular momentum which is a result of As-

sumption 1, ˙̄θ = pθ̄/ρ̄
2. Based on Assumption 2, 1/ρ̄2 term can be linearized

around ρ̄ = 1 to yield

1/ρ̄2
∣

∣

ρ̄=1
= 1− 2(ρ̄− 1) +O((ρ̄− 1)2) , (2.31)

with which the analytical solution for the angular velocity of the leg can be

derived as

˙̄θ(t̄) = 3pθ̄ − 2pθ̄F/ω̂
2
0 − 2pθ̄Me−ξω̂0 t̄ cos(ωdt̄+ φ) . (2.32)
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Then, a simple integration yields an analytical solution for the angular trajectory

of the leg as

θ̄(ρ̄) = θ̄td +X t̄ + Y (e−ξω̂0t̄ cos(ωdt̄+ φ− φ2)− cos(φ− φ2)) ,

where X := 3pθ̄ − 2pθ̄F/ω̂
2
0 and Y := 2pθ̄M/ω̂0.

Although the Equations (2.29),(2.30),(2.33) and (2.32) gives the approximate

analytical solutions to the stance trajectories of the lossy SLIP model, we still

need to solve for the times of bottom and liftoff events to complete the apex

return map.

The bottom by definition is the state where the leg reaches its maximum

compression during the stance phase which is analytically described as ˙̄ρ(t̄b) = 0.

Using (2.30), the bottom time can be found as

t̄b = (π/2− φ− φ2)/ωd . (2.33)

The analytical formulation of liftoff time is more complex than the bottom

time. By definition, liftoff occurs when the leg looses contact with the ground.

For a lossless SLIP with ξ = 0, liftoff can be defined as ρ̄(t̄lo) = ρ̄lo, which can

easily be solved using (2.29). However, in the presence of damping, the liftoff

does not only depend on leg length but also depends on the ground reaction force

on the toe. Consideration of both the leg length and the ground reaction forces

results in two different liftoff conditions.

First condition represents the case when the net force exerted on the toe by

spring-mass pair vanishes which can analytically be expressed as

κ(1− ρ̄(t̄c1lo ))− c ˙̄ρ(t̄c1lo ) = 0 . (2.34)

Alternatively, another liftoff condition occurs when the leg reaches the desired

leg length during its locomotion from decompression to ascent phase which can

be derived by using the equation

ρ̄(t̄c2lo ) = ρ̄lo . (2.35)
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Using (2.34) and (2.35), the actual liftoff time can be found as t̄lo = min(t̄c1lo , t̄
c2
lo ).

Fig. 2.3 illustrates both of these possible liftoff conditions together with the state

transitions.

Xa
n

Xtd
n

Xb
n

X lo
n (length)

Xa
n+1

0 t̄b t̄c1
lo

t̄c2
lo

t̄

X lo
n
(force)

Figure 2.3: An illustration of two possible liftoff conditions based on the force
condition of (2.34) and the length condition of (2.35).

Unfortunately, exact analytical solutions of neither (2.34) nor (2.35) is pos-

sible. Therefore, a new approximation method is proposed for the exponen-

tial term in (2.29) with its value at a specific instant during compression as

e−ξω̂0t̄ ≈ e−ξω̂0γt̄b , with γ ≥ 1. Assuming that compression and decompression

phases last roughly equal times, γ = 2 is used in these derivations. By choosing

such parameter configurations, the solutions for both conditions are obtained as

t̄c1lo ≈ (2π − arccos(κ(1− F/ω̂2
0)/(MMe−ξω̂0γt̄b))− φ− φ3)/ωd, (2.36)

t̄c2lo ≈ (2π − arccos((ρ̄l − F/ω̂2
0)/(Me−ξω̂0γt̄b))− φ)/ωd, (2.37)

where we define

M :=
√

(cω̂0)2 + κ2 − 2κcω̂0 cos(φ2) (2.38)

φ3 := arctan(
cω̂0 sin(φ2)

cω̂0 cos(φ2)− κ
). (2.39)

Combining the time instants associated with each event with the previously

derived radial and angular trajectories, the analytical approximate return map

is completed.
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2.2.2 Approximate Analytical Return Map for the

Torque-Actuated Dissipative SLIP (TD-SLIP)Model

This section briefly reviews the approximation method used in [1] based on the

method explained in Section 2.2.1.

The system dynamics of the unforced (τ = 0) TD-SLIP model is equal to

the SLIP model explained in Section 2.2.1 except that the TD-SLIP model has

no control over the leg lengths. Therefore the solutions for radial and angular

trajectories also apply in here.

In the case of forced TD-SLIP model, the applied torque effects the angular

momentum which was assumed to be constant as a consequence of Assumption 1.

This stance map approximation takes the effect of hip torque into account on the

angular momentum and corrects the momentum value at the end of the stance

phase. Since the effect on angular momentum depends on the applied torque,

we consider a ramp torque profile who has a well-known and simple analytic

formulation given below

τ(t) =







τ0(1− t
tf
) if 0 ≤ t ≤ tf

0 if t > tf

(2.40)

where τ0 and tf chosen prior to touchdown. This profile has three main advan-

tages as listed below

• It is easy to incorporate the effect of ramp torque on the unforced TD-SLIP

map due to its simple functional dependence on time.

• Choosing tf to be the predicted liftoff time results in τ(tlo) = 0 which

prevents premature liftoff due to the actuation of the hip.

• As a consequence of the unidirectional action of the hip torque profile, no

negative work is done in the sake of locomotion efficiency.
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Normally, the direct integration of angular dynamics yields the instantaneous

angular momentum around the toe during stance as

pθ(t) = pθ(0) +

∫ t

0

τ(η)dη +

∫ t

0

mgρ(η) sin θ(η)dη. (2.41)

Note that, the inspection of the TD-SLIP dynamics in [1] shows that the effect

of hip torque on the angular dynamics is much more dominant to its effect on

radial motion. Therefore, an average correction on the angular momentum can

capture the effect of hip torque on system trajectories. In [1], Ankarali suggests

an update strategy to the constant angular momentum pθ of Section 2.2.1 which

is computed as

p̂θ = pθ(0) + ∆pτ +∆pg , (2.42)

where ∆pτ and ∆pg represents the time averaged effects of the leg torque and

gravitational acceleration.

By choosing tf = tlo in the hip torque definition of (2.40), we get a very

simple solution for the torque correction term as shown below

∆pτ :=
1

tlo

∫ tlo

0

(
∫ η1

0

τ(η2)dη2

)

dη1 = τ0
tlo
3

. (2.43)

Unfortunately, it is not possible to derive an analytic expression for the grav-

ity correction term ∆pg. Therefore, a linear approximation to the integrand

ρ(η) sin θ(η) is used to obtain the following solution

∆pg :=
mgtlo
6

(2ρo sin θtd + ρlo sin θlo) . (2.44)

Section 2.2.1 details the derivation of the estimated liftoff time tlo. At this

point, the approximate analytical return map for the forced TD-SLIP model

can be obtained by substituting p̂θ for the constant angular momentum term in

all derivations. The important thing here is to notice that this process has an

iterative nature since (2.43) and (2.44) depends on the previous estimates of tlo

and θlo respectively. Consequently, starting from the unforced approximation,
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more accurate approximations can be obtained by iteratively estimating the new

values of angular momentum.

Remark 2. Actually, this apex return map corrects the angular momentum due

to the effect of both the applied torque profile and the effect of gravity in nonsym-

metric trajectories. However, in this study we will be only using the correction

due to the torque profile since we are not interested in the nonsymmetric locomo-

tion.

Note that, this chapter focuses more on the background of the SLIP model

rather than the TD-SLIP model. The reason is that this study was first in-

troduced for the SLIP model and then transferred to TD-SLIP as a transition

phase before the implementation on an actual robot platform. Detailed informa-

tion about the background of the TD-SLIP model can be found in [60].
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Chapter 3

ADAPTIVE CONTROL OF A

SPRING-MASS HOPPER

This chapter concerns the design of model-based adaptive control methods for

running with planar spring-mass hopper models. In contrast to previous con-

trollers in the literature, the proposed adaptive control algorithm in this chapter

allows high tracking performance and accurate system identification for spring-

mass hopper templates even in the presence of inaccurate and possibly time

varying leg compliance and damping.

This chapter begins by reviewing the proposed adaptive control method with

the necessary theoretical formulation in Section 3.1. We build our algorithm

based on the presence of a sufficiently accurate deadbeat controller for the SLIP

template. This algorithm was introduced in our previous study via simulations

in [61]. Section 3.2 reviews the results of this study together with the details of

the deadbeat controller of [14] on the same model. Then, Section 3.3 extends this

study to a Torque-Actuated Dissipative Spring-Loaded Inverted Pendulum (TD-

SLIP) model, towards an implementation on our actual robot platform. Finally,
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Section 3.4 concludes the chapter and discusses the possible extensions of this

algorithm to different robot platforms with different characteristics.

3.1 Adaptive Control of Spring-Mass Hopper

Template

In Section 2.1.3, the control objective of the SLIP model was defined as identify-

ing a sequence of control inputs u by using the approximate return map definition

of (2.15) to asymptotically converge to the desired apex state, X∗. In the pres-

ence of a sufficiently accurate system model, gait control of the SLIP model can

be achieved through a deadbeat strategy as described in [1, 14]. Given a desired

apex state X∗, inversion of the apex return map for the z and ẏ components of

the state yields the controller

u = f̂−1
p̂

(X∗, Xn) . (3.1)

Calibration
Experiments

Physical
SLIP Plant

Deadbeat
Controller

X∗

Xn

Xn+1

u

u = f̂−1
p̂

(X∗, Xn) Xn+1 = fp(Xn,u)

p̂

Figure 3.1: Deadbeat SLIP gait control through the inversion of the approximate
plant model.

Note, however, that such an approximate return map and hence its inverse

must rely on possibly inaccurate parameter estimates p̂ for spring and damping

constants. As shown in the block diagram of Fig. 3.1, these estimates are often

obtained through calibration experiments on the platform but may not provide

sufficiently good accuracy.
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The core of our adaptive control algorithm relies on once-per-step correc-

tions to these parameter estimates based on the difference between predicted

and measured apex states for each stride. Consequently, we will find it useful to

capture the dependence of apex height and velocity coordinates to these param-

eters through the Jacobian matrices of both the actual and approximate return

maps. For both of these models, associated Jacobians are defined as

J := ∂f/∂p =





∂ẏn+1/∂k ∂ẏn+1/∂d

∂zn+1/∂k ∂zn+1/∂d



 , (3.2)

Ĵ := ∂f̂/∂p =





∂ ˆ̇yn+1/∂k ∂ ˆ̇yn+1/∂d

∂ẑn+1/∂k ∂ẑn+1/∂d



 , (3.3)

where f and f̂ represents actual and approximate return maps, respectively. We

use numerical differentiation to compute both of these Jacobian matrices.

The corrective parameter adjustment strategy we adopt from MRAC method

[27, 29] is very similar to how estimation methods such as Kalman filters use

innovation on sensory measurement to perform state updates [62].

Parameter
Adjustment

Approximate
SLIP Model

Physical
SLIP Plant

Deadbeat
Controller

X∗ Xn+1

X̂n+1

Xn u

u = f̂−1
p̂n

(X∗, Xn) Xn+1 = fp(Xn,u)

X̂n+1 = gp̂n
(Xn,u)

p̂n

Figure 3.2: The proposed adaptive control strategy. Prediction errors of an
approximate plant model g (computed either using exact plant simulations f or
analytical approximations f̂) are used to dynamically adjust parameter estimates
p̂n.

Fig. 3.2 illustrates the block diagram for the adaptive parameter correction

scheme we propose in this study. Our method relies on the availability of an
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approximate return map g that can predict the apex state outcome of a single

step, given the apex states of the previous step Xn and associated control inputs

un. In this study, we consider two alternatives for the approximate predictor

model:

1. Exact SLIP Model (ESM): This alternative uses the numeric simula-

tion of the actual SLIP dynamics to predict the outcome of a single-stride.

This corresponds to choosing g = f in the block diagram of Fig. 3.2.

2. Approximate Analytical Solution (AAS): This option uses g = f̂ ,

adopting the approximate analytical solutions of [14] and [1] as a predictor

of SLIP trajectories. We also compute the associated Jacobian through

numerical differentiation by using these analytical solutions but it would

also be possible to analytically compute Jacobians for a more efficient im-

plementation.

As we will show in Section 3.2 and Section 3.3, the first option is useful for

accurate identification of the dynamic parameters of the system, whereas the

second option will be useful in eliminating steady-state tracking errors for the

gait-level control of SLIP running. Note that the first option brings additional

computational burden, so the second option which uses the analytical approxi-

mate solutions is much more suitable for real-time implementation on a physical

platform particularly if analytic Jacobians are used.

Regardless of which predictor is chosen, an apex state prediction error is

computed at every step as

e := Xn+1 − X̂n+1 = fp(Xn,u)− gp̂n
(Xn,u) . (3.4)

Note that the computation of this error requires measurement of actual apex

states Xn+1 at every stride, which can be accomplished through proper instru-

mentation and state estimation techniques. In Chapter 4, we talk about the
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instrumentation and filtering methods we used in our actual robot platform to

measure the apex state. More importantly, however, the predictor is expected

to use the updated estimates of dynamic system parameters p̂n rather than their

unknown physical values experienced by SLIP plant, making it relevant in com-

puting corrections on these parameters.

The goal of our adaptive control approach is to bring the steady-state value

of this prediction error to zero. In other words, we seek to have

lim
n→∞

(X̂n −Xn) = 0 , (3.5)

which will also indirectly yield steady-state parameter estimates as

p̂ = lim
n→∞

(p̂n) . (3.6)

We accomplish both of these goals using a conceptually simple yet effective

parameter adjustment strategy based on the Jacobians defined in (3.2) and (3.3).

By definition, these Jacobian matrices relate infinitesimal changes in the apex

state predictions to infinitesimal changes in the dynamic system parameters with

δX̂n+1 = (∂g/∂p)
∣

∣

Xn
δp . (3.7)

Based on this relation and the prediction errors computed at every stride, we

propose the parameter update strategy

p̂n+1 = p̂n +Ke ( ∂g/∂p )−1
∣

∣

Xn
e (3.8)

where Ke < 1 is a gain coefficient that can be used to tune convergence and pre-

vent oscillatory behavior. This yields an on-line adaptation mechanism that can

be used for both predictor choices, with the ESM choice resulting in accurate

system identification and the AAS choice yielding adaptive gait control as we will

show in following sections. It is important to note that practical applicability of

our adaptive control method inevitably depends on the accuracy of the underly-

ing SLIP model. Even though the linear spring model we used in this study was
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previously shown to result in reasonable predictive accuracy for biological run-

ners [10], extensions to the model and the associated analytical approximations

may be needed for systems with more complex, nonlinear springs.

3.2 Adaptive Control of the SLIP Model

This section discusses the application of the adaptive control algorithm explained

in Section 3.1 to the SLIP model presented in [14]. We will first briefly summarize

the deadbeat controller of [14] and then present the results of our adaptive control

study including the comparison with this nonadaptive approach.

3.2.1 Deadbeat Control of the SLIP Model with Damping

In this section, we review the design of the deadbeat controller of [14] to regulate

and stabilize the progression of the apex states of a spring-mass hopper through

the analytically formulated approximate return map described in Section 2.2.1.

The fundamental control problem in this study is to derive the appropriate

control inputs u := [θ̄td, ρ̄td, ρ̄lo] to satisfy

X∗ = fp(X,u) , (3.9)

where X and X∗ represent the current and desired apex states, respectively.

Normally, Equation (3.1) suggests that these control inputs can be easily ob-

tained through the inversion of the apex return map when you have an integrable

analytical approximation. However, in the case of this SLIP model, the associ-

ated map involves three coupled variables. Therefore, to simplify the solution

of the controllers, they first eliminate the cyclic variable horizontal position, ȳ,

from the domain of the controller since the algorithm is primarily interested in

sustained, steady-state locomotion. Then, only the apex height z̄ and the apex
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speed ¯̇y remain as variables of interest. However, the solution of the resulting

equation with these two coupled variables is not still simple enough, so it requires

an iterative procedure.

At the beginning of the iterative approach, they assume that no damping is

present in the system and solve the energy balance equation

κ(ρ̄td − 1)2 − κ(ρ̄lo − 1)2 = E(z̄∗, ¯̇y∗)− E(z̄, ¯̇y) (3.10)

to find the control inputs ρ̄td and ρ̄lo. Note that there is only one unknown in

the above equation since either of these control inputs equal to the rest length

in dimensionless units when the desired energy change is negative or positive,

respectively.

After determining these two control inputs, (3.9) reduces to a one-dimensional

equation, whose solution can be formulated as a minimization problem with

θ̄td = argmin
−π
2

< θ̄ <−π
2

(¯̇y∗ − ( π¯̇y ◦ f(X, θ̄, ρ̄td, ρ̄lo) ))
2 , (3.11)

which can be solved numerically since it is a one-dimensional monotonic function

[14]. Note that these control inputs are derived for a lossless SLIP system. We

need to take the damping losses into account to get better estimates for the

control inputs. Therefore, we first estimate the damping losses during a single

stride as

Ec :=

∫ t̄lo

0

c ˙̄ρ2(t̄)dt̄. (3.12)

The details of how this integration is computed can be found in [14]. Now, we

solve the complete energy balance equation to find the new control inputs ρ̄td

and ρ̄lo. Then, by using these new estimates, we can obtain a new solution for

the touchdown angle through (3.11), which now takes the damping into account

as well.
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3.2.2 Simulation Environment and Performance Criteria

The two related but different goals of our adaptive control are the estimation

of unknown or miscalibrated dynamic system parameters and accurate tracking

of desired apex states. Both of these goals can be defined as a function of the

steady-state behavior of the system. Consequently, we define three different

percentage error measures

SSEk := 100 lim
n→∞

( |k̂n − k|/k ) , (3.13)

SSEd := 100 lim
n→∞

( |d̂n − d|/d ) , (3.14)

SSEa := 100 lim
n→∞

(|| Xn −X∗||/|| X∗||) , (3.15)

with SSEk and SSEd capturing system identification performance and SSEa

characterizing the tracking performance of the adaptive controller.

Table 3.1: Simulation Apex Goal and Parameter Ranges for the SLIP Model
z∗a ẏ∗a k d m
(m) (m/s) (N/m) (Ns/m) (kg)

[1.25, 1.75] [1.25, 2.75] [800, 2000] [3, 15] 1

In order to characterize the performance of our adaptive control strategy, we

ran a large number of simulations using different apex goal settings X∗ as well

as different choices of dynamic parameters p within ranges specified in Table

3.1, chosen to be consistent with biomechanics literature [63] as well as existing

legged robots [20] to increase the relevance of our results.

The hybrid SLIP plant dynamics in Figures 3.1 and 3.2 were simulated in Mat-

lab using a fourth-order, adaptive time-step Runge-Kutta integrator with exact

detection of touchdown and liftoff events. Simulations were run until steady-state

was reached with a tolerance of 10−4 in the norm of the apex state. Steady-state

trajectories were found to be independent of initial apex states. However, since

the convergence behavior of (3.8) depends on the choice of the predictor and

the update gain, we will consider different initial parameter estimates p0 for our

simulations.
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3.2.3 Accurate Control with the AAS Predictor

In this section, we present apex goal tracking simulations for the SLIP model

with the AAS predictor introduced in Section 3.1. Before we proceed with more

systematic performance results, however, Fig. 3.3 illustrates an example SLIP

simulation started with a nonadaptive controller in the presence of 20% errors

for the estimates of both spring and damping constants, with the subsequent

activation of our adaptive controller using the AAS predictor around t = 2s,

finally followed by a step change in the apex goal around t = 4.55s.
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Figure 3.3: An example SLIP simulation started with a non-adaptive controller
(dark shaded region) and 20% error in both the spring and damping constants.
Our adaptive controller with the AAS predictor was started around t = 2s and
a step change in the apex goal was given around t = 4.55s.

As expected, using the non-adaptive controller with miscalibrated dynamic

parameters results in a substantial steady-state error due to prediction errors in

the analytic approximations of [14]. When the adaptive controller is switched on

around t = 2s, this error is quickly eliminated and estimated values of both the
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spring and damping constants quickly converge towards their physical values as

shown in Fig. 3.3. The last five steps of the simulation shows that steady-state

tracking remains accurate even when a step input with a large magnitude is given

to the system.

Figure 3.4: Steady-state apex goal tracking errors for the non-adaptive, AAS
adaptive and ESM adaptive controllers for the SLIP model. Error measures were
averaged across 321489 simulation runs with different goals and initial parameter
estimates. Vertical bars show standard deviations and were omitted for the non-
adaptive case since they were very large.

More generally, Fig. 3.4 illustrates the average tracking performance of our

adaptive controller across the range of apex goals and parameter choices given

in Table 3.1 corresponding to 321489 simulation runs. The top and bottom plots

respectively show the dependence of average errors and their standard deviations

on the initial deviations of the spring and damping constants for a non-adaptive

controller as well as our adaptive controller with both the AAS and ESM pre-

dictors. As expected, the non-adaptive controller results in large tracking errors
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(with very high standard deviations, omitted from the figure for clarity) whereas

the AAS Adaptive controller reduces the steady state error to zero. Average

apex tracking and parameter estimation errors and their standard deviations

across all simulations are also given in Table 3.2.

It may be surprising that the AAS predictor outperforms the ESM predic-

tor based on the exact SLIP model for apex goal tracking. However, note that

the deadbeat controller of (3.1) is based on the inversion of the AAS analytic

approximations. Naturally, when dynamic system parameters are adapted such

that the predictions of there approximations are error-free, the resulting con-

troller achieves zero tracking error. This result is expected because our adaptive

controller tries to ensure that

f̂p̂(Xn,un) −→ fp(Xn,un). (3.16)

Since both the deadbeat and the adaptive controller uses the same approximate

return map, the actual system plant converges to the desired apex state as for-

malized below

fp(Xn, f̂
−1
p̂

(X∗, Xn)) −→ X∗. (3.17)

In contrast, while the ESM predictor can accurately estimate the dynamic

parameters as shown in Section 3.2.4, some prediction errors still remain, leading

to the small steady-state tracking errors of Fig. 3.4.

Table 3.2: Percentage Apex Tracking and Parameter Estimation Errors for the
SLIP Model

Error Measure: SSEa SSEk SSEd

Non-adaptive 6.56± 4.64 10± 6.20 10± 6.20
AAS Adaptive 0.002± 0.001 2.34± 1.45 5.53± 2.81
ESM Adaptive 0.52± 0.45 0.0008± 0.0005 0.007± 0.005

In addition, Fig. 3.5 shows a comparison of the dynamic tracking perfor-

mance for the non-adaptive controller and our adaptive controller with the AAS

predictor. Once again, our controller quickly converges to the desired trajectory,
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outperforming the non-adaptive controller which suffers from miscalibrated pa-

rameter estimates. These results show that the proposed controller can maintain

accurate tracking even for dynamic goal settings and not just for a single static

target.
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Figure 3.5: Apex height (top) and speed (bottom) tracking performance for a
sinusoidal reference trajectory for the SLIP model started with a 20% error in
both the spring and damping constants. Each data point corresponds to a single
apex event.

Finally, Fig. 3.6 shows a scenario where the robot leg faces with an unex-

pected breakage during its locomotion, effecting values of the spring and damping

constants. In Fig. 3.3, we showed the robustness of our adaptive control algo-

rithm to the step changes in the desired goal settings. In contrast, this scenario

aims to show the robustness of our algorithm to step changes in the leg spring

and damping constants during locomotion in comparison to a non-adaptive ap-

proach. Both the adaptive and non-adaptive control tests start with a 5% error

in both spring and damping constants in the dark shaded region. It can be seen
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in this region that the adaptive controller follows the desired trajectory accu-

rately and the non-adaptive controller tracks the desired path with a constant

steady-state error which can be negligible in most cases. However, at t = 2.25s

a sudden breakage occurs in the robot leg, a very likely occurrence in legged

robot platforms since they are mostly designed for rough-terrain applications in

real environments. Due to this event, the estimation error in both spring and

damping constants increases to 20%, which causes a high steady-state tracking

error for the non-adaptive controller. In contrast, the adaptive controller with

the AAS predictor quickly compensates this error with the help of its on-line

estimation capability of leg compliance and damping.
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Figure 3.6: Two example SLIP simulations started with 5% error in both spring
and damping constants (dark shaded region). One of them starts with a non-
adaptive controller and the other uses our adaptive controller with the AAS
predictor. An unexpected breakage occurs in the robot leg about t = 2.25s and
it increase the estimation error in both spring and damping constants to 20%
instantaneously.
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3.2.4 System Identification with the ESM Predictor

In this section, we present the system identification performance of our algorithm

with the ESM predictor. Fig. 3.7 shows an example SLIP simulation similar

to the example of the previous section, but with the ESM predictor instead.

Once again, the first three steps were controlled with the non-adaptive strategy,

activating the adaptive controller at t = 2s and finally initiating a step change

in the apex goal setting at t = 4.55s.
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Figure 3.7: An example SLIP simulation started with a non-adaptive controller
(dark shaded region) and 20% error in both the spring and damping constants.
Our adaptive controller with the ESM predictor was started around t = 2s and
a step change in the apex goal was given around t = 4.55s.

In contrast to the AAS predictor, the use of the ESM predictor allows bet-

ter estimation of unknown dynamic parameters at the expense of steady-state

tracking accuracy. This can be observed in the bottom two plots of Fig. 3.7

as well as the corresponding columns of Table 3.2 showing an increase in the
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average apex tracking error. This result is expected since the elimination of pre-

diction errors for the exact SLIP predictor corresponds to exact identification

of the unknown dynamic parameters. For a physical robot, this would be the

best way to estimate the spring and damping constants as accurately as possible.
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Figure 3.8: Errors in steady-state estimations for the spring (top) and damping
(bottom) constants using the AAS adaptive and ESM adaptive controllers for
the SLIP model. Error measures were averaged across 321489 simulation runs
with different goals and initial parameter estimates. Vertical bars show standard
deviations.

Following this isolated example, Fig. 3.8 shows the parameter estimation

performance of our adaptive method both with the ESM and AAS predictors

across a larger range of apex goal and parameter settings. Since the non-adaptive

controller does not update parameter estimates in any way, we have not included

it in the error figures. Our results for both the spring and damping constants

show that while the ESM predictor perfectly estimates system parameters, the
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AAS predictor, which is much more practical and computationally feasible for

on-line application due to its analytic nature, also performs very well and yields

steady-state parameter estimation errors well below the 10-15% that would be

expected from manual calibration alone.
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Figure 3.9: Two example SLIP simulations started with 5% error in both spring
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adaptive controller and the other uses our adaptive controller with the ESM
predictor. An unexpected breakage occurs in the robot leg about t = 2.25s and
it increase the estimation error in both spring and damping constants to 20%
instantaneously.

As in Section 3.2.3, we design a scenario where the robot leg encounters a

breakage problem during its locomotion. We use the same parameter configu-

ration used in the experiment of Fig. 3.6. It can be clearly seen in Fig. 3.9

that both the adaptive and non-adaptive controllers follows the desired trajec-

tory with a negligible steady-state error. However, after the breakage, while

the steady-state error in the non-adaptive controller increases, the adaptive con-

troller with the ESM predictor preserves its small tracking error regardless of the

sudden changes in spring and damping constants.

42



3.3 Adaptive Control of the TD-SLIP Model

This section discuss the application of the adaptive control algorithm explained

in Section 3.1 to the torque-actuated SLIP (TD-SLIP) model presented in [1]. We

will first summarize the deadbeat controller of [1] and then present results with

our adaptive control algorithm, including a comparison with the nonadaptive

approach.

3.3.1 Deadbeat Control of the TD-SLIP Model

In this part, we briefly summarize the design of the deadbeat controller in [1]

to regulate and stabilize the progression of the apex states of a torque-actuated

spring-mass hopper through the analytically formulated approximate return map

derived in Section 2.2.2. There are a number of studies [15, 64, 65] that inverts

the analytic approximate return map to obtain a deadbeat controller for actively

stabilizing the system around a desired operating pointX∗. Our controller adopts

this approach to derive a deadbeat controller for TD-SLIP.

The control problem in this study is to derive the appropriate control inputs

u := [τ, θ] to satisfy

X∗ = fp(X,u), (3.18)

where X and X∗ represent the current and desired apex states respectively.

In the case of an explicit desired apex state, the system will require no change

in the energy level. However, in the case of a dynamic goal setting, the requested

energy to reach a desired apex state should be supplied by the hip torque. The

total energy dissipated within a single TD-SLIP step is given as

Eloss = Ed + Ek, (3.19)
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where Ed represents damping losses with

Ed :=

∫ tlo

0

dρ̇2(η) dη , (3.20)

and Ek represents the leftover energy in the leg spring when it liftoffs before it

is fully extended due to damping with

Ek := (ρlo − ρo)
2/2. (3.21)

Then, the total energy requested can be defined as

Eτ =
1

2
m((ẏ∗a)

2 − ẏ2a) +mg(z∗a − za) + Eloss, (3.22)

which should be equal to the Eτ , energy supplied by the hip torque. See [1] for

details.

After determining the desired torque profile, the only remaining control vari-

able is the touchdown leg angle, θtd which can be obtained through a one-

dimensional optimization problem as

θtd = argmin
−π
2

< θ <−π
2

(ẏ∗a − ( πẏa ◦P(θtd, [za, ẏa]k) ))
2 , (3.23)

whose numerical solution is trivial since we have an analytic approximation of

the return map P. This choice of hip torque, τ and touchdown leg angle, θtd

yields an effective, one-step deadbeat controller for the TD-SLIP model.

3.3.2 Simulation Environment and Performance Criteria

Similar to Section 3.2.2, our adaptive controller has two different but related

goals: the estimation of miscalibrated system parameters and accurate tracking

of desired apex states. We define both of these goals as a function of the steady-

state behavior of the system. We use the error measures SSEk and SSEd defin-

ing the system identification performance and SSEa characterizing the tracking

performance whose analytic formulation are given in Section 3.2.2.
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In order to characterize the performance of our adaptive control strategy on

TD-SLIP, we ran a large number of simulations using different apex goal settings

X∗ as well as different choices of dynamic parameters p within ranges specified

in Table 3.3, chosen to be consistent with our robot design explained in Chapter

4 and the ranges in [1] for fair comparison.

Table 3.3: Simulation Apex Goal and Parameter Ranges for the TD-SLIP Model

z∗a ẏ∗a k d m
(m) (m/s) (N/m) (Ns/m) (kg)

[0.25, 0.35] [1.2, 1.8] [4200, 5400] [3, 15] 4

The hybrid TD-SLIP plant dynamics were simulated in Matlab using a fourth-

order, adaptive time-step Runge-Kutta integrator with exact detection of touch-

down and liftoff events. Similar to Section 3.2.2, simulations were run until

steady-state was reached with a tolerance of 10−4 in the norm of the apex state

and steady-state trajectories were found to be independent of the initial apex

states. However, since the convergence behavior of (3.8) depends on the choice

of the predictor and the update gain, we will consider different initial parameter

estimates p0 for our simulations up to 20 percent deviations.

3.3.3 Accurate Control with the AAS Predictor

In this section, we extend the apex goal tracking simulations performed for the

SLIP model in Section 3.2.3 to the TD-SLIP model with the AAS predictor intro-

duced in Section 3.1. Similar to Section 3.2.3, we give a sample SLIP simulation

before proceeding with more systematic performance results. Fig. 3.10 illustrates

this simulation started with a nonadaptive controller in the presence of 20% er-

rors for the both spring and damping constant estimates, with the subsequent

activation of our adaptive controller using the AAS predictor around t = 1.4s,

finally followed by a step change in the apex goal around t = 2.5s.
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As expected, using the nonadaptive controller with miscalibrated dynamic

parameters results in a substantial steady-state error due to prediction and ap-

proximation errors in the analytic approximation of [1]. Right after the activation

of our adaptive controller with the AAS predictor, this error is quickly eliminated

and estimated values of both the spring and damping constants quickly converge

towards their physical values as shown in Fig. 3.10. Besides, we apply a step

change with a large magnitude to the apex goal setting of the system around

t = 2.5s and observe that the steady-state tracking still remain accurate.
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Figure 3.10: An example TD-SLIP simulation started with a non-adaptive con-
troller (dark shaded region) and 20% error in both the spring and damping
constants. Our adaptive controller with the AAS predictor was started around
t = 1.4s and a step change in the apex goal was given around t = 2.5s.

More generally, Fig. 3.11 illustrates the average tracking performance of our

adaptive controller across the range of apex goals and parameter choices given

in Table 3.3 corresponding to 306180 simulation runs. The top and bottom plots

respectively show the dependence of average errors and their standard deviations

on the initial deviations of the spring and damping constants for a nonadaptive
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controller as well as our adaptive controller with both the AAS and ESM pre-

dictors. As expected, the nonadaptive controller results in large tracking errors

(with very high standard deviations, omitted from the figure for clarity) whereas

the AAS Adaptive controller reduces the steady state error to zero (ignoring the

negligible numeric computation errors). Unlike SLIP, whose corresponding re-

sults are illustrated in Fig. 3.4, the tracking performance of TD-SLIP has less

dependence to the deviations in damping constant as shown in the lower plot of

Fig. 3.11. This is why the tracking performance of the Nonadaptive and ESM

Adaptive methods get closer in the spring constant deviation plot (upper plot)

of Fig. 3.11 around 1, corresponding to region without deviation. Average apex

tracking and parameter estimation errors and their standard deviations across

all simulations are also given in Table 3.4.
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Figure 3.11: Steady-state apex goal tracking errors for the non-adaptive, AAS
adaptive and ESM adaptive controllers for the TD-SLIP model. Error measures
were averaged across 306180 simulation runs with different goals and initial pa-
rameter estimates. Vertical bars show standard deviations and were omitted for
the non-adaptive case since they were very large.
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Observing Table 3.4, the AAS predictor outperforms the ESM predictor based

on the exact TD-SLIP model and the Nonadaptive controller for apex goal track-

ing. In Section 3.2.3, we analytically showed how the AAS predictor achieves

zero tracking error in steady-state for the SLIP model. This result is also valid

in TD-SLIP case since both the AAS predictor for the TD-SLIP model and the

deadbeat controller of ((3.1)) is based on the inversion of the analytic approxi-

mation explained in Section 2.2.2.

In contrast, while the ESM predictor can accurately estimate the dynamic

parameters as shown in Section 3.3.4, some prediction errors still remain due to

the analytic approximations used for the deadbeat control, leading to the small

steady-state tracking errors of Fig. 3.11.

Table 3.4: Percentage Apex Tracking and Parameter Estimation Errors for the
TD-SLIP Model

Error Measure: SSEa SSEk SSEd

Non-adaptive 2.47± 0.52 10± 6.20 10± 6.20
AAS Adaptive 0.18± 0.12 3.57± 1.61 3.89± 1.31
ESM Adaptive 0.95± 0.35 1.95× 10−8 2.48× 10−8

Similar to SLIP, we also run a sinusoidal trajectory following experiment

to observe the response of our controller to dynamic goal settings. Fig. 3.12

shows a comparison of these tests for the nonadaptive controller and our adaptive

controller with the AAS predictor. Once again, our controller quickly converges

to the desired trajectory, outperforming the nonadaptive controller which suffers

from miscalibrated parameter estimates. These results show that the proposed

controller can maintain accurate tracking even for dynamic goal settings and not

just for a single static target.
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Figure 3.12: Apex height (top) and speed (bottom) tracking performance for a
sinusoidal reference trajectory for the TD-SLIP model started with a 20% error
in both the spring and damping constants. Each data point corresponds to a
single apex event.

Finally, Fig. 3.13 illustrates the case where the robot leg faces with an un-

expected breakage during its locomotion, resulting in deviations in leg spring

and damping constants. Similar to tests in Section 3.2.3, both the adaptive and

nonadaptive tests start with a 5% error in both spring and damping constants

in the dark shaded region. It can be seen from Fig. 3.13 that the nonadaptive

controller tracks the desired path with a small constant steady-state error while

the adaptive controller can accurately follow the same trajectory. At t = 1.05s,

we apply a step change to the actual values of leg spring and damping constants

to simulate a sudden breakage likely to occur for legged platforms. Due to this

event, the estimation error in these parameters increase to 20% which results in

a high steady-state tracking error for the nonadaptive controller. In contrast, the
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adaptive controller with the AAS predictor quickly compensates this error with

the help of its on-line estimation capability of leg compliance and damping.
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Figure 3.13: Two example TD-SLIP simulations started with 5% error in both
spring and damping constants (dark shaded region). One of them starts with a
non-adaptive controller and the other uses our adaptive controller with the AAS
predictor. An unexpected breakage occurs in the robot leg about t = 1.05s and
it increase the estimation error in both spring and damping constants to 20%
instantaneously.

3.3.4 System Identification with the ESM Predictor

In this section, we present the system identification performance of our algorithm

with the ESM predictor. Fig. 3.14 shows an example TD-SLIP simulation similar

to the example of previous section, but with the ESM predictor instead. Simi-

larly, we control the first four steps in the dark shaded region with a nonadaptive

controller resulting in a large steady-state tracking error. Then, at t = 1.4s our

adaptive controller with the ESM predictor is activated for on-line identification
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of system parameters. Finally, we initiate a step change in the apex goal setting

around t = 2.5s and observe that our algorithm is robust to these changes.
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Figure 3.14: An example TD-SLIP simulation started with a non-adaptive con-
troller (dark shaded region) and 20% error in both the spring and damping
constants. Our adaptive controller with the ESM predictor was started around
t = 1.4s and a step change in the apex goal was given around t = 2.5s.

As in SLIP case, the use of ESM predictor allows better estimation of un-

known dynamic parameters at the expense of steady-state tracking accuracy.

This result can be observed in the bottom plots of Fig. 3.14. Section 3.2.4 gives

an intuitional proof of these results.

Following this isolated example, Fig. 3.15 illustrates the system identifica-

tion performance of our adaptive method with both the ESM and AAS predictors

across a large range of apex goal and parameter settings. Since the nonadaptive

controller does not estimate the system parameters, we have not included its

results in the estimation figures. Our results for both the spring and damping

constants show that the ESM predictor perfectly estimates system parameters.

51



4200 4400 4600 4800 5000 5200 5400
0

2

4

6

Spring Constant

S
S

E
k

 

 
AAS Adaptive
ESM Adaptive

3 6 9 12 15
0

2

4

6

8

Damping Constant

S
S

E
d
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(bottom) constants using the AAS adaptive and ESM adaptive controllers for the
TD-SLIP model. Error measures were averaged across 306180 simulation runs
with different goals and initial parameter estimates. Vertical bars show standard
deviations.

In contrast, AAS predictor also performs very well and yields steady-state pa-

rameter estimation errors well below the 10-15% that would be expected from

manual calibration alone.

As in Section 3.3.3, we prepare a scenario where the robot leg encounters

breakage problem during its locomotion. We use the same parameter config-

uration used in the experiment of Fig. 3.13. It can be seen in Fig. 3.16 that

both the adaptive and nonadaptive controller maintains a very small steady-state

tracking error in the first region. However, after the breakage event, the steady-

state tracking error in the nonadaptive controller increases substantially while

the adaptive controller with the ESM predictor preserves its small tracking error.

The important thing here is to notice that the adaptive controller can accurately

52



estimate leg compliance and damping even in the presence of a sudden change

in their values.
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Figure 3.16: Two example TD-SLIP simulations started with 5% error in both
spring and damping constants (dark shaded region). One of them starts with a
non-adaptive controller and the other uses our adaptive controller with the ESM
predictor. An unexpected breakage occurs in the robot leg about t = 1.05s and
it increase the estimation error in both spring and damping constants to 20%
instantaneously.

Note that, as given in Table 3.3, we used different damping values in the

range of [3 15] Ns/m and tested up to 20% deviation from the original values.

During the experiments, we observed that d = 15 Ns/m is the maximum damping

value in which monopod can run successfully. Beyond this value, the locomotion

becomes unstable. All of the above mentioned results excludes the results of

these unstable runs.
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3.4 Discussions and Future Work

In summary, our adaptive controller can be used both as a system identification

tool through the use of ESM predictor, or as an accurate gait controller for apex

states with the AAS predictor. The latter option is much more suitable for on-

line operation on a physical running robot since the approximate solutions and

associated Jacobians can be formulated analytically, making them computation-

ally feasible. The ESM predictor, however, not only requires simulated trajectory

predictions, but also incorporates numeric differentiation around these simulated

trajectories, making it much more suitable for off-line system identification.

Nevertheless, in all cases, our adaptive methods perform much better than

the non-adaptive approach both for gait control and system identification. Our

contributions with this method clearly illustrate that when analytic solutions to

the dynamics of a legged platform are available, their structure and efficiency can

be exploited to yield effective solutions both for control and system identification.

Our future work includes extensions of this method to more complex legged

models and locomotion controllers as well as their implementation on actual

robotic platforms.
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Chapter 4

TOWARDS EXPERIMENTAL

INQUIRIES

Robotics as a comprehensive field of science and engineering, requires a harmony

between the theory and application. As a result, successful ideas and innovations

in theory should also show the same performance in real life applications to be a

breakthrough study in this field. Motivated by this principle, we built an actual

one-legged robot platform towards experimental inquiries of our adaptive control

strategy whose success has been proved in extensive simulation studies [61].

The main principle in the design of this robot is to separate the design of the

planarizer system from the robot in order to achieve a modular testbench which

can be used for different legged robot platforms in the future. The following

sections discuss the mechanical, electronics and software design of our robot

as well as the performed system identification studies to identify the unknown

parameters. Additionally, we investigate the robot’s motion achieved by a simple

torque-actuated open loop controller.
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4.1 Robot Design

4.1.1 Mechanical Design

The concept of a planarizer with a circular boom is a widely used approach in

the design of legged robot platforms [19, 41, 44]. One of the main advantages of

this method is that the robot can travel long distances in circles without any

interruption. However, the boom length should be large enough to treat the

robot’s trajectory as a planar motion in return.

Figure 4.1: The CAD design of the planarizer.

The CAD design of the planarizer and with the boom is depicted in Fig. 4.1.

The main goal of the planarizer is to allow free horizontal and vertical motion

to the robot leg, which is located at the tip of the planarizer boom, in order

to achieve accurate measurement of these motions by optical encoders in the

planarizer.

Fig. 4.2 shows the mounted, initial prototype of the robot we have built. The

left figure on Fig. 4.2 shows the overall structure of the robot while the right

figure more focuses on the planarizer with some fundamental components. Here

the configuration of the encoders for the measurement of horizontal and vertical

rotation can be clearly seen. In addition to that, a 1x6 pulley system is also seen

which is used to increase the resolution of the encoders. The boom length (the
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distance between the robot and the planarizer) was chosen to be 1.67 m. in this

design to preserve the rigidity of the booms although longer booms are better to

imitate planar locomotion.

Figure 4.2: The hopper robot. (a) Overall structure of the initial prototype. (b)
Planarizer part with a close view of pulley system.

In the aforementioned planarizer system, the measured weight at the tip of the

planarizer is considered as a point mass in the connection of the hip motor and

the robot leg. Therefore, the combination of this point mass with the connected

leg forms the Spring-Loaded Inverted Pendulum (SLIP) model at the hip. Both

the CAD design and actual setup of the robot leg is depicted in Fig. 4.3.

Since the SLIP model assumes zero leg mass, the robot leg should be as light

as possible. However, we observed in our initial leg designs that materials like

aluminium can deform easily with sudden ground collisions (especially in high

velocities). Therefore, we used a steel rod to preserve the balance between the

weight and rigidity.

A simple bearing part is connected to the hip motor with a locking mecha-

nism to prevent possible dislocations of the leg from the robot body. Linear ball

bearings are used inside this bearing part to decrease the friction due to move-

ment of the leg. Additionally, two stopper mechanisms are used to constraint leg

movement inside these bearings.
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(a) CAD design (b) Actual setup

Figure 4.3: Robot leg including the CAD design and the actual setup.

Finally, the leg stick is surrounded by a spring to implement the SLIP tem-

plate in the actual platform. This spring acts as a mechanical capacitance in

the leg to store and release energy when it is compressed or decompressed re-

spectively. The spring is also chosen after extensive experimental studies to find

optimum stiffness and damping.

In this part, the mechanical design of the robot is performed by other group

members. My main contribution is the construction of the robot leg.
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4.1.2 Electronics - Hardware Design

All computational and motor control hardware of our robot was placed on the

planarizer side. The robot leg is a pure mechanical system with no sensor or

motor on it. Four 12 V lead-acid batteries are connected to the planarizer from

outside through a slip ring to ensure free rotation around the planarizer.

A Cool LiteRunner-LX800 (PC104 single board computer) with an AMD

Geode LX800 processor running at 500 MHz is used to perform all the necessary

computation and to implement the control algorithms. The robot leg is actuated

by a Maxon RE-40-148877 150W brushed DC motor combined with a Maxon

GP-42-C two-stage 1:3.5 planetary gear [66]. Although motor is driven by PWM

voltage control, approximate torque control can also be implemented with addi-

tional back-EMF compensation in software, which allows control of motor and

hence the leg angle via PD control loops.

For the sensing part, a two-channel HEDS-5540 A11 optical encoder with

500 lines (2000 counts per revolution) is used to measure the rotation of the hip

motor. In addition to that, two two-channel US Digital E3 optical encoders with

2048 counts per revolution is used to measure the horizontal and vertical motions

of the robot.

Universal Robot Bus (URB) system is used to support communication inside

the robot for data-acquisition and actuation. The URB is a real-time fieldbus ar-

chitecture that facilitates easy and modular deployment of heterogeneous sensor

and actuator nodes that require a central control authority (CPU in our case)

in a robot while providing a software abstraction that eliminates the possible

problems arising due to the lack of hardware homogeneity [67].

The hopper robot has one actuator node (Hip Node) and one sensor node

(Encoder Node) which are connected to the CPU by the URB interface. The
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Figure 4.4: The Hip Node. The motor control node to perform local actuation
and sensing tasks for the robot leg.

Hip Node (illustrated in Fig. 4.4) is a motor control node which is designed

to perform local controllers associated with sensors and actuators on the robot

leg. The Hip Node reduces the computational burden on CPU by handling the

local control tasks on its own microprocessor. Another primary functionality of

the Hip Node is to build an interface to the optical encoder attached to the hip

motor to sense the relative hip angle. Hip Node sends the hip angle to the CPU

when requested by making the necessary computations with a standard HCTL

2021 encoder counter chip.

Figure 4.5: The Encoder Node. The planarizer encoder node to measure the
vertical and horizontal rotation of the robot body.

60



Similarly, the Encoder Node (illustrated in Fig. 4.5) performs necessary com-

putations to measure the relative horizontal and vertical angles of the boom by

using a HCTL 2032 encoder counter chip.

All hardware nodes in the electronic design are connected to the CPU through

a gateway structure called ‘The URB Bridge’ (illustrated in Fig. 4.6). The main

function of the bridge is to enable asynchronous communication between the

CPU and the hardware nodes. The bridge buffers the data and asynchronously

processes the requests coming from the CPU for the data exchange with hardware

nodes.

As explained, the robot has a well-organized electronic system structure

through a hierarchical arrangement of the electronic parts. The Fig. 4.7 il-

lustrates this structure with an overview of the electronic components used in

the robot.

Figure 4.6: The URB Bridge. The gateway between the CPU and the hardware
nodes on the bus.
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Figure 4.7: The Electronic System Structure.

In this part, the bridge and the hip node components were previously designed

and constructed. I directly used these components in the electronics structure of

the robot. My main contribution is to design and construct the planar encoder

node which is used to measure the horizontal and vertical rotation of the robot by

using the encoders in the planarizer. I also implemented the necessary software

for this node.

4.1.3 Software Design

The algorithm development of the robot was performed in C++ programming

language with the support of RHexLib library. The RHexLib is a software library

which is design to ease the algorithm development for robot platforms [15]. The
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core of the library relies on the concept of a Module which defines specific tasks

that have to be performed periodically such as the reading of encoders and control

computations [15]. On the higher level there is a Module Manager which manages

the execution, access control and registry of all modules in the system [15].

Finally on the lower level there is an abstract hardware interface layer where the

low level hardware access is performed [15]. The details of the RHexLib library

can be found in [15].

4.2 System Identification

This section briefly reviews the system identification studies performed to identify

the unknown parameters of the robot represented in Section 4.1. Relevant values

are the leg spring and damping constants and the point mass attached to the

SLIP model.

In this study, we use an off-line manual calibration technique that relies on

fitting experimental data to an analytical map which includes all interested pa-

rameters in it. We chose vertical hopping as the experiment to ease the analytical

return map of a single stride. The following sections describe the vertical hop-

ping experiments, our derived analytical return map and the system identification

algorithm to estimate the values of our interested variables.

4.2.1 Vertical Hopping Experiments

Since the experiments only deal with the vertical motion, a module was imple-

mented to prevent the rotation of the legs during the collisions since any change

in the leg angle will affect the model characteristics substantially. The stand

module performs this task by using a PD controller which ensure that the robot

leg stays upright when the module is activated.
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Figure 4.8: A single hopping experiment in the stand mode. The robot was
left from an initial height with no vertical speed. The upper and below graphs
illustrate the vertical position and speed over time until the robot stabilizes itself
in the standing mode.

Then, the robot was thrown upwards and its motion was recorded by using

the optical encoders until it stabilizes itself in the stand mode on the ground.

The reason why the robot was threw upwards initially is to detect actual apex

states by avoiding any affect of the initial launch. We made about 150 hopping

tests in which both the vertical position and speed of the robot with respect to

time was recorded. Fig. 4.8 shows the results of a single experiment with vertical

position and velocity.

As seen in Fig. 4.8 it takes 7 - 8 strides for the robot to loose its initial energy

and stabilize itself in the standing mode. Among these multiple strides, we will

only deal with the data from the first apex state to the next one to prevent as

much noise as we can.

The desired apex states can be found easily by finding the zero crossings of

the vertical speed trajectories by using Matlab. However, the vertical speed data

contains a non-negligible amount of noise since it is derived by the numeric differ-

entiation of the position data. Because of this reason, some filtering techniques
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Figure 4.9: Vertical position and speed data filtered with a bidirectional butter-
worth filter. The resulting apex states detected from the zero crossings of the
speed data matches with the summits of the position data.

should be applied to this data before processing it. The important problem here

is that using a single filter such as a Butterworth filter causes phase offset, which

may result in a time shift in the detection of apex states. To avoid such prob-

lems Matlab’s bidirectional filtering method filtfilt is used in combination with

a butterworth filter. This filtering technique does not create any problems since

we are working off-line. The filtfilt method filters the given data in both forward

and backward directions to minimize the phase distortion. Fig. 4.9 shows the

filtered vertical speed and the detected apex states as a result of this process.

As it is seen in Fig. 4.9 the zero crossings of the filtered speed match with the

highest points of the position data which shows that the filtering method did not

cause any phase distortion in data.

4.2.2 One Dimensional Return Map

By using the experimental results of Section 4.2.1, we derive an input matrix

which consists of the initial apex states and an output matrix which includes the

resulting apex states. Now, this section tries to build a one dimensional return

map from one apex state to another for a single vertical stride.
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As previously stated, the SLIP consists of two locomotion phases according

to its contact with the ground. The flight dynamics of the SLIP model was

explained in Section 4.2.2 and it does not change for vertical hopping experi-

ments. However, the stance dynamics is easier for vertical hopping according to

the original dynamics since the leg angle is no longer takes place in the equations

of motion.

By using the free body diagram of the SLIP model at the instant when the

leg touches the ground, the equations of motion for the vertical components of

the state can be derived as

mz̈ = k(zo − z)− dż −mg, (4.1)

where zo denotes the initial height. The equation (4.1) is in the form of a second-

order non-homogeneous differential equation whose solution can be derived easily

as shown below

z(t) = exp((−d/(2m))t)[c1 cos(wt) + c2 sin(wt)] + zo −mg/k, (4.2)

where c1 = mg/k, c2 = (2kρ+ dg)/(2kw) and w =
√
4mk − d2/(2m).

In addition to the locomotion phases and corresponding transition events

represented in Section 4.2.2, another event is defined in our new one dimensional

return map to consider the effect of liftoff collision between the robot leg and the

point mass. As explained in Section 4.1.1, our robot has a stopper mechanism to

constraint the leg’s movement inside the linear ball bearings. Right before the

liftoff event, the accelerating robot in the decompression phase collides with the

leg and lifts it. This is an elastic collision where the two body collides and they

move together after the collision. We model the effect of this collision by using

the leg velocity as shown below

ż+ = ż−
mbody

mbody +mleg

. (4.3)
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where mbody and mleg represents the body and leg masses respectively. Note that

the leg mass is only considered to model its effect on liftoff velocity. In all other

computations the leg is assumed to be massless.

4.2.3 System Identification Results

In previous sections, the experimental and analytical methodology of our system

identification algorithm has been explained. This section gives the results of this

algorithm and discuss the validity of the identification results.

We used Matlab’s Optimization Toolbox for curve fitting between our ex-

perimental data and analytical return map. The optimization toolbox has a

data-fitting function called lsqcurvefit which solves the nonlinear curve-fitting

problems in least-squares sense. Since our goal in this study is to find the system

parameter values which minimizes the least-squares errors between the experi-

mental trajectory of a single stride and the analytical trajectory, lsqcurvefit is

the best optimization method to solve our problem.

The lsqcurvefit uses trust-region-reflective algorithm which relies on approxi-

mating the desired function with lower degree functions in some specific regions

(trust regions) and expanding these regions until an adequate model of the actual

function is found [68]. As a result of the initial tests with the lsqcurvefit, the

identified parameters are given in Table 4.1.

Table 4.1: System Identification Results with Initial and Final Height Experi-
ments

Parameter: Value Unit

k 2430 N/m
d 8.67 Ns/m
m 4.36 kg

Fig. 4.10 shows the trajectories of a sample stride for both experimental data

and analytical map with these identified parameters. The first inconsistency with
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Figure 4.10: The comparison between the actual and fitted trajectories for a
single stride for the identified parameter values given in Table 4.1.

the system identification results is that the robot mass is much higher than our

manual measurements which is about 2.5 kg including the inertial effects from

the boom. The effect of such identification error can be seen in the difference

between the actual and fitted trajectories. Especially, the bottom heights of the

two trajectories differ a lot from each other. Actually, this result is not surprising

for our least-squares problem definition. The lsqcurvefit is fed only with the

initial and final apex heights so it tries to minimize the error in the resulting

apex height and Fig. 4.10 shows that it accomplishes this task successfully. To

get a better fit of the actual trajectory, the bottom height should also be fed to

the curve-fitting method since it plays an important role in the stance trajectories

which also determines the ascent trajectory.

In this new method, the bottom heights of the experimental data and ana-

lytical map is also extracted. The bottom height can be easily found by putting

the bottom time tb into the equation (4.2). However, finding the bottom time

requires the analytical differentiation of the equation (4.2) and solving it for

zero crossings since the bottom height is a local minima of the vertical position
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function. The derived vertical velocity equation is given below

ż(t) = (−d/(2m)) exp((−d/(2m))t)(c1 cos(wt) + c2 sin(wt))

+ exp((−d/(2m))t)(−wc1 sin(wt) + wc2 cos(wt)). (4.4)

The bottom time tb can be easily found by numerically solving this equation in

Matlab. The resulting parameter estimates are given in Table 4.2. Fig. 4.11

Table 4.2: System Identification Results with Initial, Bottom and Final Height
Experiments

Parameter: Value Unit

k 2350 N/m
d 6.09 Ns/m
m 2.58 kg

shows the actual and fitted trajectories with new parameter estimates. It can

be clearly seen that the new parameter estimates give better trajectory fitting

to sample experimental data when the bottom height is also considered. Since

there is no horizontal velocity in the system the exact fitting of bottom height

and the next apex state gives well enough parameter estimates.
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Figure 4.11: The comparison between the actual and fitted trajectories for a
single stride for the identified parameter values given in Table 4.2 including the
bottom height as a control variable.
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4.3 Open Loop Running Experiments

In this section, we discuss the open loop running experiments we performed to

observe the performance of our robot and to find the necessary control inputs

for stable locomotion. Motivated by the open loop continuous torque strategy

of [69], we employ a new open loop torque control algorithm to supply the loss

energy to the system at each stride.

The majority of experiments were designed to debug the control software and

to tune the control parameters for the most stable locomotion. Our results show

that we can obtain a stable running performance for limited number of steps when

the open loop control inputs are adjusted properly. In the following sections, we

first describe our open loop control algorithm based on a state machine diagram

and then present the results of our experimental studies.

4.3.1 Open Loop Control

The controller for our robot was implemented in C++ and RHexLib software

library [15]. The control algorithm is based on the Universal Robot Bus (URB)

structure explained in Section 4.1.2. All the communication with the actuators

and sensors are handled via URB. Our controller is in the form of a state machine

diagram (illustrated in Fig. 4.12) which interfaces associated actuators and sen-

sors depending on the active state. This state machine just shows an overview of

the controller. We detail the states and associated transition events to explain

the underlying control structure.

Start: The initial state of the control algorithm. This state includes the ini-

tialization of the system and calibration of the leg position. We throw the
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START Descent

StanceAscent

STOP

Apex

Touchdown

Apex

Liftoff

Failure

Failure

Failure

Figure 4.12: State machine diagram of the controller in the entire system loop
including the states and the associated transition events.

robot upwards at this state for accurate detection of the apex event and to

trigger the state transition to the actual control loop.

Descent: The intuitional explanation of descent phase is given in Section 2.1.1.

Here, we explain the behavior of our control algorithm in this state. The

descent is that state where the robot sets the touchdown leg angle which

has constant value in the case of our open loop control strategy.

After a number of experiments with different values, we decided to use

−25 deg as the fix touchdown leg angle at each stride. We use PD control

to set the touchdown leg angle. At the beginning of the descent phase, the

PD controller starts to move the leg towards requested leg angle. The PD

gains for this controller is also adjusted experimentally such that the leg

reaches desired value before the touchdown occurs.

An important thing about the descent phase is that we do not directly

command the requested touchdown leg angle to the PD controller to avoid

excessive current demand from the batteries. Instead, we divide the angle
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Table 4.3: PD Gains for Leg Position Controller

Gain term: Value Unit

Kp 0.22 A/ deg
Kd 0.45 As/ deg

interval (from the current angle to the requested angle) into discrete steps

and command each of these intermediate angles successively.

Stance: The phase where the robot leg is in contact with the ground. In this

phase, we inject energy to the system by applying torque via the hip motor.

Currently, we apply constant torque during the whole phase which is about

τ = 7Nm. However, since we do not use feedback control in these tests,

there may be some difference between the requested and applied torque.

Ascent: The phase where the robot starts to ascend during the flight phase.

The only objective of this state is to maintain the leg position until the

apex event since inertial effects of the torque from the stance phase may

cause extreme rotations when the leg is not in contact with the ground.

The leg angle is preserved via a PD controller which also uses the same

gains given in Table 4.3.

Stop: The phase where the robot disables the hip motor to shut down all the

motor activity.

In addition to these states, there are some transition triggering events to

handle state changes in the control loop. In Section 2.1.1, we explain how to

detect Apex, Touchdown and Liftoff events. We implement the same analytic

formulations here to detect these events. Additionally, the Failure event detects

problems such as the collision with the ground during the locomotion and triggers

the Stop phase to avoid any damage in the robot.
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4.3.2 Experimental Results

In this part, we present the experimental results of our robot. We performed a

number of tests for tuning the control parameters to obtain a stable locomotion.

In this part, we will mainly focus on one of our final experiments in which our

robot preserves its stability for 50 steps which is an acceptable value for an open-

loop controlled robot as compared to some other one-legged hopping machines

such as Uniroo whose maximum number of hops is about 40 steps [70]. Fig. 4.13

illustrates the results of this experiment. However, from now on we will only use

a small portion of this long run in our illustrations for clarity of the figures.
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Figure 4.13: Vertical position vs. horizontal position for the COM of our robot.
The horizontal position of the first apex event is shifted to zero for better illus-
tration.

Single Stride Video

Fig. 4.14 illustrates the sequential snapshots of the robot during a single stride.

The snapshots starts from an apex event and the robot moves towards the right

as time progress. The last snapshot illustrates the apex event for the next stride.
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The formulations and explanations of each phase and transition event is given in

Section 2.1.1. Here, we simply describe what each snapshot corresponds to.

1. Apex Event: the robot is at its maximum height with zero vertical velocity.

2. Descent Phase: the leg is being driven to the touchdown leg angle via PD

control.

3. Touchdown Event: the toe of the leg has just touched the ground.

4. Compression Phase: the spring is being compressed. The body rotates

around the toe with applied torque.

5. Bottom Event: the instant where the maximum compression occurs. The

leg is vertical and the COM is at the lowest point.

6. Decompression Phase: the spring is being decompressed and it releases

the stored energy. The body continues to rotate around the toe with hip

torque.

7. Liftoff Event: the leg is about the take-off from the ground. The body has

its maximum vertical speed.

8. Ascent Phase: the liftoff leg angle is preserved via PD control and the body

starts to gain elevation.

9. Apex Event: the robot is at its maximum height with zero vertical velocity.
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(a) Apex Event (b) Descent Phase (c) Touchdown Event

(d) Compression Phase (e) Bottom Event (f) Decompression Phase

(g) Liftoff Event (h) Ascent Phase (i) Apex Event

Figure 4.14: Snapshots of hopping motion during a single stride including the
phases and associated transition events.
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Height vs. Time

Fig. 4.15 illustrates the height of the COM trajectory of our robot over time.

The detected apex and touchdown events are also represented with red plus (+)

and circle (o) signs, respectively. The desired touchdown height is ρo cos θ =

0.225 cos (25) = 0.204 (m). The measured values also result in a close touchdown

height about 0.21 (m).

The hopping frequency, fhop, is about 3.5 Hz according to our measurements.

However, according to the frequency formulation of [71], the hopping frequency

should be fhop = 3.0m−0.19 = 2.5 Hz. One of the reasons behind this difference

is that we use stiff spring in our studies as compared to the spring constant

formulation of [71].

Finally, the average vertical speed of the robot can be calculated as 2ρofhop =

1.57 (m/s) which is very high due to our spring stiffness choice as compared to

other hopping robots.
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Figure 4.15: Vertical position of the COM of the robot over time including the
detected apex (+) and touchdown (o) states.
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Horizontal Position vs. Time

Fig. 4.16 illustrates the horizontal position of the robot over time. It is clearly

seen that the robot moves forward smoothly. the slope of this plot can be inter-

preted as the horizontal speed. Therefore, the average horizontal speed of the

robot can be calculated from this plot as 1.41 (m/s).
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Figure 4.16: Horizontal position of the robot over time.

Height vs. Horizontal Position

Fig. 4.17 illustrates the height of the COM of the robot with respect to horizontal

position. The plot shows a smooth, five-meter run of the robot. The robot follows

a sinusoidal path as expected. The important thing here is to notice that almost

all the apex heights remain above 0.26 m height which easily clears the toe of

the leg from the ground. Finally, length of an average stride is measured as 0.4

m from the plot.
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Figure 4.17: Vertical position vs. horizontal position.

Leg Length vs. Time

The leg length equals to rest length during the flight phase. In the stance phase,

it can be computed by using the leg angle θ and vertical position z as

ρ =
z

cos (θ)
. (4.5)

Note that, in some cases the robot may liftoff before the spring is fully ex-

tended which results in a smaller leg length at the beginning of the ascent phase.

However, we neglect such small errors. Fig. 4.18 illustrates the leg length over

time under this assumption.

On the average, the maximum compression is about 0.04 m which corresponds

to the %18 of the rest length. This compression results in the following energy

Espring = 0.5kx2 = 1.88J (4.6)

where x is the compression length. By using simple potential energy calculations,

we can conclude that this energy is enough to elevate the robot body about 0.075

(m) in a lossless system without needing any other energy source. However, we

also use torque-actuation to gain extra elevation.
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Figure 4.18: Leg length over time.

Duty Cycle

Fig. 4.19 illustrates the average flight and stance times of the locomotion. The

duty cycle of the locomotion is computed as the ratio of the stance phase (where

the toe of the leg is in contact with the ground) to the duration of the complete

stride. In [72], the duty cycle for running in humans is defined as 0.2. Our

experiments also results in a close value 0.22 which means that the locomotion of

our hopper can be accepted as running according to the running gait definition

of [72] based on the duty cycle.

Stance StanceFlight Flight

{{

0.215 (s) 0.06 (s)

Figure 4.19: Average duty cycle of the locomotion with durations of the flight
and stance phases.
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4.4 Discussion

The most important goal of our design was the development of a modular pla-

narizer system that can be used for different kinds of robot platforms. Instead of

designing measurement and stabilizer units for each robot design, our planarizer

enables accurate state measurement for any robot connected to its tip. This re-

sults pave the way towards designing more accurate control algorithms and state

estimation methods.

The communication inside the whole platform is ensured by Universal Robot

Bus (URB). By using such a communication interface, our robot assures easy de-

ployment of extra actuators and sensors on it. Similarly the same design enables

modular programming of the robot by using the RHexLib software library. The

only disadvantage of using such a system is the high-pitched learning curve but

once you learn the system it becomes very easy to implement any algorithm on

it.

The results of the system identification studies performed for the robot plat-

form is also consistent with our manual measurements. This kind of parameter

calibration technique is widely used in many robot platforms [3, 19–21] but it

requires a huge exertion to identify the desired parameters. In addition to that if

the desired parameters have tendency to change their values over time, the rep-

etition of this calibration process will create a big problem. As another option,

the system will need to work with miscalibrated system parameters. Therefore,

we can conclude that the manual calibration technique used in this study may

give a better estimation of the system parameters in the initial setup but it is

not efficient to use this method to identify the time-varying parameters of the

system.

Finally, we implemented a torque-actuated open loop controller to stabilize

our robot. In our experiments, we obtained a stable running of 52 steps. We also

80



made some analysis by using a small portion of our experimental data in which

the robot moves in a stable fashion.

4.5 Future Work

One of the important future works about our design is the addition of an extra

thrust mechanism to control the compression of the robot leg as in the bowleg

hopper [44]. An alternative approach is to use more powerful hip motors which

could apply more torque to the robot, so that it can supply the required energy

to elevate the robot to desired height.

Another future work direction is to develop the Universal Robot Bus inter-

face, so that faster control loops can be implemented on local nodes and faster

communication can be realized between the CPU and nodes. Additionally for

the software design, an important future work is to implement some interface

library which enables to program the robot with other programming languages

such as Matlab which have more computational power than classic C++.

Finally, a closed loop controller is required for a better understanding of the

robot’s behavior. We need to implement better controllers for stable locomotion

of the robot, so that we can perform more complex experiments.
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Chapter 5

CONCLUSIONS

In this thesis, we proposed a novel adaptive control algorithm to both support on-

line identification of unknown dynamic system parameters and improve steady-

state tracking performance of previously proposed control algorithms for the

SLIP and TD-SLIP models. Our method used as a system identification tool

addresses the practical difficulty of measuring possibly time-varying dynamic

system parameters such as spring and damping constants and associated degra-

dation in controller performance when they cannot be correctly estimated. In

contrast, our method used as an adaptive controller allows effective elimination

of steady-state tracking errors under different types of modeling errors for inverse

dynamics controllers.

The choice between these two different modes of operation depends on the

choice of a predictor model against which state measurements are compared at

each step. We show through systematic simulations that a predictor based on

numerical integration of system dynamics is capable of accurate system identi-

fication, whereas a predictor based on the analytic approximations proposed in

[14] and [1] allows elimination of steady-state tracking errors for a deadbeat con-

troller based on the same approximations. Extensive simulation results for both
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predictors show that they successfully realize these objectives and substantially

improve on control performance relative to existing non-adaptive controllers.

We also presented the design and construction of a one-legged hopping robot.

We performed some manual system identification studies to identify the unknown

parameters of our robot. Additionally, we designed a a high accuracy measure-

ment system in the form of a planarizer which can also be used for different

robot platforms in the future. We detailed the mechanical, electronics and soft-

ware design of our robot in the associated sections. Since the adaptive control

of running with these platform is beyond the scope of this thesis, we left it as a

future work to our studies.

Our longer term goal is to design legged platforms that can successfully nego-

tiate rough terrain. The applicability of mathematical models that are relevant

for this purpose critically depends on our ability to accurately estimate associated

parameters to be used by model-based planners. Consequently, starting from a

direct implementation of the method we propose in this thesis on our monopedal

platform, our future work includes extensions to more complex legged models and

locomotion controllers. In this context, we believe that our work shows some of

the benefits offered by analytic solutions to mathematical models of locomotory

behaviors.
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