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Extended Abstra
t

Pra
ti
al realization of model-based dynami
 legged behaviors is substantially more 
hallenging than stati
ally

stable behaviors due to their heavy dependen
e on se
ond order system dynami
s. This problem is further

aggravated by the di�
ulty of a

urately measuring or estimating dynami
 parameters su
h as spring and

damping 
onstants for asso
iated models and the fa
t that su
h parameters are prone to 
hange in time due

to heavy use and asso
iated material fatigue. Fortunately, this issue is not 
on�ned to the 
ontrol of legged

lo
omotion and re
eived 
onsiderable attention from the adaptive 
ontrol 
ommunity [1℄. Motivated by work

in this area, this study presents a new model-based adaptive 
ontrol method for running with the well-known

Spring-Loaded Inverted Pendulum (SLIP) model (see Fig. 1), emphasizing on-line estimation of unknown or

mis
alibrated dynami
 system parameters.
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Figure 1: The Spring-Loaded Inverted Pendulum (SLIP) model. Dashed 
urve illustrates a single stride from

one apex event to the next, de�ning the return map Xn+1 = f(Xn, un).

In the presen
e of a su�
iently a

urate model, gait 
ontrol of the SLIP model 
an be a
hieved through a

deadbeat strategy as des
ribed in [2℄. Given a desired apex state X∗
, inversion of the apex return map yields

the 
ontroller u = f−1(X∗, Xn). Note, however, that the approximate return map and hen
e its inversion 
an

only rely on possibly ina

urate parameter estimates for spring and damping 
onstants.

The 
ore of our adaptive 
ontrol strategy relies on on
e-per-step 
orre
tions to these estimates based on the

di�eren
e between predi
ted and measured apex states for ea
h stride [3℄. This 
orre
tive parameter adjustment

is very similar to how estimation methods su
h as Kalman �lters use innovation on sensory measurements to

perform state updates.

Fig. 2 illustrates the blo
k diagram for the adaptive parameter 
orre
tion s
heme we propose. Our method

relies on the availability of an approximate return map g that 
an predi
t the apex state out
ome of a single

stride. In this study, we 
onsider two alternatives for this approximate predi
tor model. Exa
t SLIP Model (ESM)



predi
ts the out
ome through numeri
al simulation of SLIP dynami
s. In 
ontrast, Approximate Analyti
al

Solution (AAS) uses analyti
 di�erentiation of AAS derived in [2℄.

Parameter
Adjustment

Approximate
SLIP Model

Physical
SLIP Plant

Deadbeat
Controller

X∗
Xn+1

X̂n+1

Xn u

u = f̂−1

p̂n

(X∗, Xn) Xn+1 = fp(Xn,u)

X̂n+1 = gp̂n
(Xn,u)

p̂n

Figure 2: The proposed adaptive 
ontrol strategy. Predi
tion errors of an approximate plant model g are used

to dynami
ally adjust parameter estimates.

The �rst option is useful for a

urate identi�
ation of the dynami
 parameters of the system, whereas the

se
ond option will be useful in eliminating steady-state tra
king errors for the gait-level 
ontrol of SLIP running.

Both of these goals 
an be de�ned as a fun
tion of steady-state behavior of the system. Consequently, we de�ne

three error measures where SSEk and SSEd 
apture system identi�
ation performan
e and SSEa 
hara
terizes

the tra
king performan
e of the adaptive 
ontroller. In order to test our algorithm, we run a large number of

simulations using di�erent ranges of system parameters. Table I summarizes the average apex state tra
king and

parameter estimation errors and their standard deviations a
ross all simulations.

It may be surprising that AAS predi
tor outperforms the ESM predi
tor for apex goal tra
king. However, note

that the deadbeat 
ontroller of [2℄ is based on the inversion of AAS. Naturally, when dynami
 system parameters

are adapted su
h that the predi
tions of these approximations are error-free, the resulting 
ontroller a
hieves

zero tra
king error in steady-state. In 
ontrast, while the ESM predi
tor 
an a

urately estimate the dynami


parameters, some remaining predi
tion errors still remain, leading to the small steady-state tra
king errors as

shown in Table I.

Table 1: Per
entage apex tra
king and parameter estimation errors

Error Measure: SSEa SSEk SSEd

Non-adaptive 6.56± 4.64 10± 6.20 10± 6.20
AAS Adaptive 0.002± 0.001 2.34± 1.45 5.53± 2.81
ESM Adaptive 0.52± 0.45 0.0008± 0.0005 0.007± 0.005

In this study, we proposed a novel adaptive 
ontrol algorithm to both support on-line identi�
ation of unknown

dynami
 parameters and improve steady-state tra
king performan
e of previously proposed 
ontrol algorithms

for SLIP model. Our method used as a system identi�
ation tool addresses the pra
ti
al di�
ulty of measuring

possibly time-varying dynami
 system parameters. In 
ontrast, our method used as an adaptive 
ontroller allows

e�e
tive elimination of steady-state tra
king errors under di�erent types of modeling errors for inverse dynami
s


ontrollers.
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