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Extended Abstrat

Pratial realization of model-based dynami legged behaviors is substantially more hallenging than statially

stable behaviors due to their heavy dependene on seond order system dynamis. This problem is further

aggravated by the di�ulty of aurately measuring or estimating dynami parameters suh as spring and

damping onstants for assoiated models and the fat that suh parameters are prone to hange in time due

to heavy use and assoiated material fatigue. Fortunately, this issue is not on�ned to the ontrol of legged

loomotion and reeived onsiderable attention from the adaptive ontrol ommunity [1℄. Motivated by work

in this area, this study presents a new model-based adaptive ontrol method for running with the well-known

Spring-Loaded Inverted Pendulum (SLIP) model (see Fig. 1), emphasizing on-line estimation of unknown or

misalibrated dynami system parameters.
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Figure 1: The Spring-Loaded Inverted Pendulum (SLIP) model. Dashed urve illustrates a single stride from

one apex event to the next, de�ning the return map Xn+1 = f(Xn, un).

In the presene of a su�iently aurate model, gait ontrol of the SLIP model an be ahieved through a

deadbeat strategy as desribed in [2℄. Given a desired apex state X∗
, inversion of the apex return map yields

the ontroller u = f−1(X∗, Xn). Note, however, that the approximate return map and hene its inversion an

only rely on possibly inaurate parameter estimates for spring and damping onstants.

The ore of our adaptive ontrol strategy relies on one-per-step orretions to these estimates based on the

di�erene between predited and measured apex states for eah stride [3℄. This orretive parameter adjustment

is very similar to how estimation methods suh as Kalman �lters use innovation on sensory measurements to

perform state updates.

Fig. 2 illustrates the blok diagram for the adaptive parameter orretion sheme we propose. Our method

relies on the availability of an approximate return map g that an predit the apex state outome of a single

stride. In this study, we onsider two alternatives for this approximate preditor model. Exat SLIP Model (ESM)



predits the outome through numerial simulation of SLIP dynamis. In ontrast, Approximate Analytial

Solution (AAS) uses analyti di�erentiation of AAS derived in [2℄.
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Figure 2: The proposed adaptive ontrol strategy. Predition errors of an approximate plant model g are used

to dynamially adjust parameter estimates.

The �rst option is useful for aurate identi�ation of the dynami parameters of the system, whereas the

seond option will be useful in eliminating steady-state traking errors for the gait-level ontrol of SLIP running.

Both of these goals an be de�ned as a funtion of steady-state behavior of the system. Consequently, we de�ne

three error measures where SSEk and SSEd apture system identi�ation performane and SSEa haraterizes

the traking performane of the adaptive ontroller. In order to test our algorithm, we run a large number of

simulations using di�erent ranges of system parameters. Table I summarizes the average apex state traking and

parameter estimation errors and their standard deviations aross all simulations.

It may be surprising that AAS preditor outperforms the ESM preditor for apex goal traking. However, note

that the deadbeat ontroller of [2℄ is based on the inversion of AAS. Naturally, when dynami system parameters

are adapted suh that the preditions of these approximations are error-free, the resulting ontroller ahieves

zero traking error in steady-state. In ontrast, while the ESM preditor an aurately estimate the dynami

parameters, some remaining predition errors still remain, leading to the small steady-state traking errors as

shown in Table I.

Table 1: Perentage apex traking and parameter estimation errors

Error Measure: SSEa SSEk SSEd

Non-adaptive 6.56± 4.64 10± 6.20 10± 6.20
AAS Adaptive 0.002± 0.001 2.34± 1.45 5.53± 2.81
ESM Adaptive 0.52± 0.45 0.0008± 0.0005 0.007± 0.005

In this study, we proposed a novel adaptive ontrol algorithm to both support on-line identi�ation of unknown

dynami parameters and improve steady-state traking performane of previously proposed ontrol algorithms

for SLIP model. Our method used as a system identi�ation tool addresses the pratial di�ulty of measuring

possibly time-varying dynami system parameters. In ontrast, our method used as an adaptive ontroller allows

e�etive elimination of steady-state traking errors under di�erent types of modeling errors for inverse dynamis

ontrollers.
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