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Extended Abstract

Practical realization of model-based dynamic legged behaviors is substantially more challenging than statically
stable behaviors due to their heavy dependence on second order system dynamics. This problem is further
aggravated by the difficulty of accurately measuring or estimating dynamic parameters such as spring and
damping constants for associated models and the fact that such parameters are prone to change in time due
to heavy use and associated material fatigue. Fortunately, this issue is not confined to the control of legged
locomotion and received considerable attention from the adaptive control community [1]. Motivated by work
in this area, this study presents a new model-based adaptive control method for running with the well-known
Spring-Loaded Inverted Pendulum (SLIP) model (see Fig. 1), emphasizing on-line estimation of unknown or
miscalibrated dynamic system parameters.

Figure 1: The Spring-Loaded Inverted Pendulum (SLIP) model. Dashed curve illustrates a single stride from
one apex event to the next, defining the return map X, 11 = £f(X,,, u,).

In the presence of a sufficiently accurate model, gait control of the SLIP model can be achieved through a
deadbeat strategy as described in [2]. Given a desired apex state X*, inversion of the apex return map yields
the controller u = f~1(X*, X,,). Note, however, that the approximate return map and hence its inversion can
only rely on possibly inaccurate parameter estimates for spring and damping constants.

The core of our adaptive control strategy relies on once-per-step corrections to these estimates based on the
difference between predicted and measured apex states for each stride [3]. This corrective parameter adjustment
is very similar to how estimation methods such as Kalman filters use innovation on sensory measurements to
perform state updates.

Fig. 2 illustrates the block diagram for the adaptive parameter correction scheme we propose. Our method
relies on the availability of an approximate return map g that can predict the apex state outcome of a single
stride. In this study, we consider two alternatives for this approximate predictor model. Ezact SLIP Model (ESM)



predicts the outcome through numerical simulation of SLIP dynamics. In contrast, Approzimate Analytical
Solution (AAS) uses analytic differentiation of AAS derived in [2].
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Figure 2: The proposed adaptive control strategy. Prediction errors of an approximate plant model g are used
to dynamically adjust parameter estimates.

The first option is useful for accurate identification of the dynamic parameters of the system, whereas the
second option will be useful in eliminating steady-state tracking errors for the gait-level control of SLIP running.
Both of these goals can be defined as a function of steady-state behavior of the system. Consequently, we define
three error measures where SSFEy and SSFE, capture system identification performance and SSE, characterizes
the tracking performance of the adaptive controller. In order to test our algorithm, we run a large number of
simulations using different ranges of system parameters. Table I summarizes the average apex state tracking and
parameter estimation errors and their standard deviations across all simulations.

It may be surprising that AAS predictor outperforms the ESM predictor for apex goal tracking. However, note
that the deadbeat controller of [2] is based on the inversion of AAS. Naturally, when dynamic system parameters
are adapted such that the predictions of these approximations are error-free, the resulting controller achieves
zero tracking error in steady-state. In contrast, while the ESM predictor can accurately estimate the dynamic
parameters, some remaining prediction errors still remain, leading to the small steady-state tracking errors as
shown in Table I.

Table 1: Percentage apex tracking and parameter estimation errors
| Error Measure: | SSE, | SSEy, | SSE, |
Non-adaptive 6.56 = 4.64 10 £6.20 10 +6.20
AAS Adaptive | 0.002 £ 0.001 2.34+£1.45 5.53 £2.81
ESM Adaptive | 0.52+£0.45 | 0.0008 £ 0.0005 | 0.007 £ 0.005

In this study, we proposed a novel adaptive control algorithm to both support on-line identification of unknown
dynamic parameters and improve steady-state tracking performance of previously proposed control algorithms
for SLIP model. Our method used as a system identification tool addresses the practical difficulty of measuring
possibly time-varying dynamic system parameters. In contrast, our method used as an adaptive controller allows
effective elimination of steady-state tracking errors under different types of modeling errors for inverse dynamics
controllers.
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