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Abstract—We study diffusion based channel estimation in
distributed architectures suitable for various communication
applications such as cognitive radios. Although the demand for
distributed processing is steadily growing, these architectures re-
quire a substantial amount of communication among their nodes
(or processing elements) causing significant energy consumption
and increase in carbon footprint. Due to growing awareness of
telecommunication industry’s impact on the environment, the
need to mitigate this problem is indisputable. To this end, we
introduce algorithms significantly reducing the communication
load between distributed nodes, which is the main cause in
energy consumption, while providing outstanding performance.
In this framework, after each node produces its local estimate
of the communication channel, a single bit or a couple of bits of
information is generated using certain random projections. This
newly generated data is diffused and then used in neighboring
nodes to recover the original full information, i.e., the channel
estimate of the desired communication channel. We provide
the complete state-space description of these algorithms and
demonstrate the substantial gains through our experiments.

I. INTRODUCTION

The demand on distributed networks (or processing units) is
steadily growing due to increased efficiency and performance
improvements they provide in various different applications
[1]. The broadened perspective provided by these architec-
tures significantly enhances channel estimation performance;
is used to avoid environmental obstructions; or permit resource
sharing and allocation. However, these architectures demand
astounding amount of communication between their nodes
causing significant energy consumption and increase in carbon
footprint. Due to growing awareness of telecommunication
industry’s impact on the environment, the need to mitigate
this carbon footprint is indisputable. To this end, we introduce
novel approaches substantially reducing the communication
load for the distributed architectures, which is the main source
of energy consumption, without any significant performance
degradation [1].

In particular, we investigate “diffusion” based distributed
architectures in a channel identification (or estimation) frame-
work, where distributed nodes are used for channel estimation
and share their information to improve overall estimation
accuracy. The diffusion based distributed algorithms define a
strategy in which the nodes from a predefined neighborhood
share information with each other [2]–[4]. Such approaches

that diffuse information to their neighbors instead of using
a central processing units are stable against time-varying
statistical profiles [2], however, entail a high amount of
communication load. For example, in a network of N nodes,
where M denotes the number of channel coefficient, then
the overall communication burden among nodes is given by
N ×M at each instant, which can be highly impractical for
certain applications.

We propose diffusion based cooperation strategies that
have significantly less communication load (e.g., a single bit
or a couple of bits of information exchange) and achieve
comparable performance to the full information exchange
configurations under certain settings. In this framework, each
node estimates an unknown communication channel observed
through a linear model. After local estimates of the desired
channel is produced in each node, a single bit or multiple bits
of information is generated using certain random projections of
the local estimates. This new information is then diffused and
utilized in neighboring nodes instead of the original estimates;
significantly reducing the communication load in the network.
We only require synchronization of this randomized projection
operation, which can be achieved using simple pilot signals
[5].

Our approach differs from quantization based diffusion
strategies such as [6], where quantized parameter estimates
are exchanged among nodes to avoid infinite precision, in
terms of the compression of the diffused information. Here,
we substantially compress the exchanged information, even
to a single bit, and perform local adaptive operations at each
node to recover the full channel information. In this sense, our
method is more akin to compressive sensing rather than to a
quantization framework. To this end, we propose algorithms
to significantly reduce the amount of communication between
nodes for diffusion based distributed strategies and illustrate
the comparable convergence performance of these algorithms
in different numerical examples. We also emphasize that our
algorithms are generic and can be straightforwardly extended
to perform prediction, hypothesis testing or filtering in diffu-
sion based distributed algorithms with significant reduction in
communication load.
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Fig. 1: A distributed network of nodes.

II. PROBLEM DESCRIPTION

Consider a network of nodes distributed spatially as shown
in Fig. 1, which models a wide range of applications including
spectrum sensing in cognitive radio networks to distributed
processing in multi-cores [1]–[4]. Here, we have n distributed
nodes and two nodes are considered neighbors if they can
exchange information, where we assume that the information
exchange is bi-directional. For each node i, we denote the
set of its neighbors (including itself) as Ni. Here, each node
estimates an unknown communication channel ho ∈ �

m

observed through a linear model di(t) = uT
i (t)ho + vi(t),

where the observations are corrupted by additive white noise1

and diffuses its information to neighboring nodes. The obser-
vation noise is temporally and spatially white (or independent),
i.e., E[vi(t)vj(l)] = σ2

i δ(i − j)δ(t − l), where δ(·) is the
Kronecker delta and σ2

i is the variance of the noise. The
underlying ho can also represent spectrum parameters or a
state vector of an unknown system2 in different applications,
where our derivations still hold. The linear transformation (or
the regressor) ui(t) is known by the node Ni but unknown
to the other nodes. We also assume that ui(t)’s are spatially
and temporally uncorrelated with each other and with the
observation noise.

At each node an adaptive channel estimation algorithm is
used to recover ho such as a stochastic gradient approach [7]
given as

φi(t+ 1) = (I − μiui(t)u
T
i (t))hi(t) + μidi(t)ui(t), (1)

μi > 0, where hi(t) represents the current estimate and
φi(t + 1) is the updated estimate after the new observation.
We emphasize that our approach is generic such that one can
use different estimation algorithms instead of (1) [7]. As the
diffusion strategy, we next use the adapt-then-combine (ATC)

1We represent vectors (matrices) by bold lower (upper) case letters. For a
matrix A (or a vector a), AT is the transpose. ‖a‖ is the Euclidean norm. For
notational simplicity we work with real data and all random variables have
zero mean. The sign of a is denoted by sign(a) (0 is considered positive
without loss of generality). For a vector a, dim(a) denotes the length. The
expectation of a vector or a matrix is denoted with an over-line, i.e. E[a] = a.
The diag(A) returns a new matrix with only the main diagonal of A while
diag(a) puts a on the main diagonal of the new matrix.

2Although we assume a time invariant desired vector, our derivations can
be readily extended to certain non-stationary models [7].

diffusion strategy as an example, however, our derivations also
cover other diffusion strategies [2]. In the ATC strategy, at each
node i, the final channel estimate is constructed as

hi(t+ 1) =
∑
k∈Ni

λi,kφk(t+ 1), (2)

after the estimates of the neighboring nodes arrive to i, where
λi,k’s are the combination weights

∑
k∈Ni

λi,k = 1 and
λi,k ≥ 0. The combination weights λi,k can also be adapted in
time, however, we use weights that are constant in time with
the simplex constraint (since the stabilization effect of such
weights is demonstrated in [2]).

In the diffusion based distributed networks, the entire chan-
nel estimates φk(t+ 1)’s are exchanged within the neighbor-
hood, which requires a substantial amount of communication
between the nodes even if efficient quantization methods are
used [6]. In the next section, we study algorithms that signif-
icantly reduce the amount of information exchange between
the neighboring nodes.

III. A SECOND ESTIMATION LEVEL INSTEAD OF
DIFFUSION

In the well known formulation (2), each node i receives
the entire vector of estimated channel coefficients from all
its neighbors. This requires an exchange of O(m) “real”
coefficients for each node. Instead of directly transmitting
the estimated vector of coefficients, we introduce a different
perspective [5]. We first observe that for the node i, the
estimated channel coefficients of its neighbors, φk(t + 1),
k ∈ Ni, are naturally unknown. Hence, instead of collecting
these unknown coefficients from the neighboring nodes, we
next formulate another estimation level, where the node i
(in addition to its original task) estimates φk(t + 1)’s of its
neighbors. In this case instead of the original φk(t + 1)’s,
each node i constructs estimated vectors, say ak(t + 1)’s, of
φk(t+1)’s that are directly used in (2) instead of the original
φk(t+ 1)’s [5]. We demonstrate through this perspective, we
can tremendously reduce the communication load, i.e., from
a continuum to a couple of bits, while providing nearly equal
performance to the original formulation.

For the node i, φk(t + 1) is unknown and suppose both
nodes i and k calculates a linear transformation of φk(t+ 1)
through a randomized linear transformation cT (t+1)φk(t+1),
where construction of c(t + 1) is detailed later in the paper.
Then, if ak(t+1) accurately represents φk(t+1), then cT (t+
1)ak(t + 1) should be close to cT (t + 1)φk(t + 1). In this
sense, in this new framework, φk(t+1) is the desired vector of
coefficients and ak(t+1) is our estimate. Hence, we formulate
another, i.e., a second level of, estimation framework at node
i to recover φk(t + 1) by a stochastic gradient algorithm by
minimizing the estimation error as

ak(t+ 1) = ak(t) + ρk∇ak
ε2k(t+ 1)

= ak(t) + ρkεk(t+ 1)c(t+ 1), (3)

where we have εk(t+1)
�
= cT (t+1)φk(t+1)−cT (t+1)ak(t),

i.e., the estimation error, and ρk > 0 is the learning rate. After
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we perform the update in (3), we then use ak(t + 1) at the
node i instead of φk(t+ 1) in (2).

For this formulation, the node k needs to provide only the
scalar εk(t+ 1) instead of the whole φk(t+ 1) to the node i
since all the other quantities are known by both nodes i and k.
Note that both nodes i and k can synchronously run the same
(3) provided that εk(t+ 1) is communicated to i from k, i.e.,
the node k can also construct ak(t+ 1) in order to construct
εk(t+ 1), which is transmitted to the node i.

To accomplish this effectively, we next introduce an adap-
tive quantization scheme in order to effectively and efficiently
construct εk(t+1) at the node i for all k ∈ Ni. If the estimation
scheme is successful, then εk(t+1) converges to a white noise
process due to the linear filtering formulation in (3). Hence
adaptive quantizers using linear predictive formulations are
usually ineffective since there should be no correlation left in
εk(t) if estimation is successful. In order to effectively perform
quantization, we next introduce a scalar adaptive quantization
framework with guaranteed synchronization between nodes.
Note that one can straightforwardly extend our formulation
to a vector quantization framework, however, we use a scalar
quantization framework for notational simplicity.

At time t, we quantize εk(t + 1) as ε̃k(t + 1) =
Qk,t (εk(t+ 1)) at the node k, where Qk,t(·) : � →
{qk,t,1, . . . , qk,t,2b} is a time adaptive quantizer using b-bit
as explained in the following, and transmit the quantized bits
to the node i. We also assume that εk(t+ 1) is Gaussian dis-
tributed where this assumption is widely used in the literature
[7]. Hence, to construct Qk,t(·), we need the variance and the
mean of the process εk(t+1). To adaptively estimate the mean
and variance of the process, we can only use the previous
quantized bits ε̃k(1), . . . , ε̃k(t) to guarantee synchronization
between the nodes i and k. To this end, we use a recursive
mean estimator

m̃k(t+ 1) = (1− ηk)m̃k(t) + ηk ε̃k(t),

and a recursive variance estimator

σ̃2
k(t+ 1) = (1− ηk)σ̃

2
k(t) + ηk ε̃

2
k(t),

using only the quantized error samples [8], where the for-
getting factors ηk > 0 are set equal for notational simplicity.
Based on m̃k(t), σ̃k(t), and assuming that the estimation error
is Gaussian distributed, we construct

{qk,t,1, . . . , qk,t,2b} = arg min
q1,...,q2b∫ ∞

−∞

(x−Q(x))2√
2πσ̃2

k(t)
exp

{
− [x− m̃k(t)]

2

2σ̃2
k(t)

}
dx,

where
Q(x)

�
= arg min

qi∈{q1,...,q2b}
‖x− qi‖2,

yielding the mean square error optimal quantization algorithm
(if the estimated mean and variance converge). We next
provide a mean stability analysis of the overall diffusion based
algorithm.

IV. MEAN STABILITY ANALYSIS

The diffusion update at the node i with the second layer of
adaptation can be written in a compact form as

φi(t+ 1) = hi(t) + μiei(t)ui(t), (4)
ak(t+ 1) = ak(t) + ρkQk,t (εk(t+ 1)) c(t+ 1), (5)

hi(t+ 1) = λi,iφi(t+ 1) +
∑

k∈Ni\i
λi,kak(t+ 1), (6)

where μi > 0 and ρk > 0. Note that (5) is also carried out
in the neighboring nodes k ∈ Ni \ i. Since we have two
estimation algorithms, we define deviations from the parameter
of interests as

Δφk(t+ 1) = ho − φk(t+ 1), (7)
Δak(t+ 1) = φk(t+ 1)− ak(t+ 1). (8)

Substituting (8) and (7) into (6), we get the final estimate as

hi(t+ 1) =
∑

k∈Ni

λi,kφk(t+ 1)−
∑

k∈Ni\i
λi,k Δak(t+ 1).

To continue with the mean stability analysis, we make the
following assumptions:
1) c(t) and uk(t) are temporally independent.
2) The error εk(t) and c(t) are jointly Gaussian and uncor-
related. For sufficiently small step size and long filter length,
this assumption is true [7].
3) The original parameter estimates φi(t) vary slowly relative
to the constructed estimates ai(t) through the appropriate step
sizes such that

Δak(t) = φk(t)− ak(t) ∼= φk(t+ 1)− ak(t) or
Δak(t+ 1) = φk(t+ 1)− ak(t+ 1) ∼= φk(t)− ak(t+ 1).

4) The quantization error Δεk(t + 1) = εk(t + 1) −
Qt,k (εk(t+ 1)) is i.i.d. with zero mean independent from
the regressors and observation noise processes [8].

To construct a complete state space recursion, we define the
following global variables

U(t)
�
=

⎡
⎢⎣
u1(t) . . . 0

...
. . .

...
0 . . . uN (t)

⎤
⎥⎦ ,

v(t)
�
=

⎡
⎢⎣
v1(t)

...
vN (t)

⎤
⎥⎦ , Δφ(t)

�
=

⎡
⎢⎣
Δφ1(t)

...
ΔφN (t)

⎤
⎥⎦ ,

Δa(t)
�
=

⎡
⎢⎣
Δa1(t)

...
ΔaN (t)

⎤
⎥⎦ , Δε(t)

�
=

⎡
⎢⎣
Δε1(t)

...
ΔεN (t)

⎤
⎥⎦ .

Using these global variables, for the first adaptation layer, we
get

Δφ(t+ 1) =
(
I −DU(t)U(t)T

)
G Δφ(t)− (9)(

I −DU(t)U(t)T
)
G̃ Δa(t) +DU(t)v(t),
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Fig. 2: Statistical profile of the example network (σ2
v = 0.01).

where G
�
= Λ ⊗ Im is the transition matrix (and ⊗ is the

Kronecker product), G̃
�
= G − diag (G), Λ

�
= [λi,k] is the

combination matrix and D
�
= diag ([μ1, μ2, ..., μN ])⊗ Im.

The global update for the reconstructed parameters yields

Δa(t+ 1) = (I − SM(t))Δa(t) + SL(t)Δε(t+ 1), (10)

where S
�
= diag ([ρ1, ρ2, ..., ρN ])⊗Im, L(t)

�
= Im⊗c(t+1)

and

M(t) = Im ⊗
(
c(t+ 1)c(t+ 1)T

c(t+ 1)T c(t+ 1)

)
.

If we calculate the expectations of (9) and (10) under our
assumptions, then we get[

Δφ(t+ 1)
Δa(t+ 1)

]
=

[
BG BG̃
0 I − SM(t)

] [
Δφ(t)
Δa(t)

]
, (11)

where B
�
= I − DU(t)U(t)T . From (11) we observe that

our algorithms are stable in the mean if |λ (
I − SM

) | < 1
(provided that the full diffusion scheme is stable), where λ(·)’s
are the eigenvalues. Assuming c(·) are i.i.d. zero mean with
unit variance, then |λ (I − SM

) | < 1 if and only if |1−ρi| <
1 for all i.

V. NUMERICAL EXAMPLE

We compare the proposed diffusion algorithms with the
scalar, full diffusion and the no-cooperation schemes for the
example network with n = 10 nodes and m = 10. Each node
i observes a stationary data di(t) = uT

i (t)ho + vi(t), where
ui(t) is i.i.d. zero mean Gaussian vector process with auto-
covariance matrix C = σ2

ui
I and σ2

ui
are seen in Fig. 2. The

observation noise vi(t) is zero-mean i.i.d. Gaussian random
process with variance σ2

v = 0.01. We set the true channel
coefficients ho ∈ �10 randomly from a normal distribution
and normalize to have ‖ho‖ = 1.

We combine the estimation parameters through a modified
Metropolis rule where

λi,k =

⎧⎨
⎩

2
m2

1
max(ni,nk)

if i 	= k are linked,
0 for i and k not linked,
1−∑

k∈Ni\i λi,k for i = k
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Fig. 3: Global mean-square deviation (MSD) of diffusion and
no-cooperation schemes.

and ni denotes the cardinality of the neighborhood Ni.
We set the step sizes as 0.05 for the estimation update (4)

and 0.01 for the construction update (5) (for the scalar diffu-
sion ρk = 0.1) so that they converge with the same rate. The
forgetting factor ηk is set to 0.02. The randomized projection
vector c(t) is generated i.i.d. Normal random process. In Fig.
3, we compare the global mean-square deviation (MSD) of
the diffusion schemes. We observe that introduced schemes
enhance the estimation performance of the single-bit diffusion
strategy and through the diffusion of two-bit we can achieve
almost identical performance with the scalar diffusion strategy.

VI. CONCLUSION

We study diffusion based distributed adaptive channel esti-
mation algorithms that significantly reduce the communication
load while providing comparable performance with the full
information exchange configurations in our simulations. We
achieve this by exchanging either a single bit or a couple of
bits of information generated from a second layer of adaptation
using random projections. Based on these exchanged informa-
tion, each node recovers the channel estimates generated by
its neighboring nodes (which are then subsequently combined).
We also provide a complete state space model and demonstrate
the mean stability of the introduced approaches for stationary
data. This analysis can also be extended to mean-square and
tracking analysis under certain settings.
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