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Abstract—We study sequential prediction of energy consump-
tion of actual users under a generic loss/utility function. Par-
ticularly, we try to determine whether the energy usage of the
consumer will increase or decrease in the future, which can be
subsequently used to optimize energy consumption. To this end,
we use the energy consumption history of the users and define
finite state (FS) predictors according to the relative ordering
patterns of these past observations. In order to alleviate the
overfitting problems, we generate equivalence classes by tying
several states in a nested manner. Using the resulting equivalence
classes, we obtain a doubly exponential number of different FS
predictors, one among which achieves the smallest accumulated
loss, hence is optimal for the prediction task. We then introduce
an algorithm to achieve the performance of this FS predictor
among all doubly exponential number of FS predictors with a
significantly reduced computational complexity. Our approach
is generic in the sense that different tying configurations and
loss functions can be incorporated into our framework in a
straightforward manner. We illustrate the merits of the proposed
algorithm using the real life energy usage data.

Index Terms—Order preserving pattern matching, sequential
prediction, online learning.

I. INTRODUCTION

Due to rapid climate changes and increasing awareness of
global warming, the demand for a low carbon future is steadily
growing. A prevalent method to reduce carbon emissions is
renewable and efficient energy production. For a successful
realization of this goal, the energy profile (particularly, the
energy usage patterns) of the consumers should be carefully
analyzed. To accomplish this, we study the sequential predic-
tion of energy consumption trend and introduce an algorithm
to predict the future relative energy consumption of customers
according to their past energy usage patterns. Specifically,
observing past energy usage samples, we predict the trend of
the samples, i.e., determine whether an increase or a decrease
in the energy usage will happen in the future.

Since we are interested in the relative value of the future
consumption, we use the relative ordering pattern of the energy
consumption history to construct our decisions, as explained
later in the paper. In this sense, the relative ordering of the data
in the past corresponds to the state, context, or side information
in our algorithms. To motivate this choice of states, one can
argue that an uphill trend or a downhill trend in energy usage
(or pricing) may continue in the future since decisions or

actions of people usually depend on their past experiences
and their future actions may be inferred from their previous
behavior patterns [1]. In our experiments, we demonstrate that
we can accurately predict the relative electric consumption of
actual customers using their past consumption patterns.

State dependent (or pattern matching) prediction is exten-
sively studied both in signal processing and computational
learning theory literatures since this structure naturally arises
in different real life applications, e.g., [2]–[5]. In these studies
[2]–[5], the states (or equivalence classes) usually correspond
to different partitions of the regressor space and independent
predictors are assigned to each state. However, in this paper,
we are interested in the trend of the energy consumption rather
than its actual value. In this sense, both the state definitions
and the prediction framework are substantially different in this
paper with respect to [2]–[5].

We emphasize that since we seek to predict an in-
crease/decrease yielding a binary prediction problem, this
problem is more inline with the relevant studies in the infor-
mation theory literature such as [6] (and references therein).
The universal binary prediction algorithm in [6] is proven to
achieve the performance of any batch FS predictor in the
long run. Hence, for any choice of states, one can use the
algorithm of [6] to achieve the performance of any state depen-
dent predictor. However, such algorithms require a substantial
amount of past information in order to provide satisfactory
performance, which is not available even for decent energy
consumption pattern lengths. Hence, these asymptotical results
may not be acceptable over finite data lengths, therefore, one
should also learn the definition of the best state among with
the optimal FS predictor that minimizes the accumulated loss
for that state. In this sense, although such asymptotical results
apply in the long run, they are not applicable over finite length
data sequences and for nonstationary data.

In this paper, we first introduce a sequential prediction
algorithm where the state information is fixed, i.e., the relative
ordering of the past data of length h is used as the state.
We then introduce a hierarchical model that also sequentially
learns the best state information from the data in order
to minimize the prediction loss. Particularly, for all doubly
exponential number (∼ 2h

h

) of FS predictors defined by the
hierarchical model, we introduce a sequential algorithm that i)
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Fig. 1: Relative ordering patterns for h = 3, where solid lines represent one
directional transitions and dashed lines represent bi-directional transitions.

achieves the performance of the optimal FS predictor among
all FS predictors, ii) operates with a computational complexity
linear in the pattern length, i.e., O(h), iii) can incorporate any
convex loss function as well as nested tying configuration in
a straightforward manner.

II. FS PREDICTION USING ORDER PRESERVING PATTERNS

We sequentially observe a real valued sequence (i.e., the
energy consumption data) x1, x2, . . . and produce an output d̂t
based on x1, . . . , xt at each time t, xt ∈ R. Then, the true dt
is revealed yielding a loss (or gain, according to the definition
of the utility function) l(dt, d̂t) for some predetermined loss
function l(·, ·). For any n, the accumulated loss is given by∑n

t=1 l(dt, d̂t). We use a finite state (FS) predictor to produce
the output d̂t, where the relative ordering patterns are selected
as the states as shown in Fig. 1. In its most generic form,
a FS predictor has a prediction function d̂t = ft(st), where
st is the current state taking values from a finite set st ∈ S ,
S = {1, . . . , S}, e.g., the set of relative ordering patterns.
The states are traversed according to the next state function
st+1 = g(st, xt+1, xt, . . . , xt−h+2).

In this paper, we use the relative ordering pattern of the past
sequence as our states. In particular, at each time t, we use
the last h samples of the sequence history xt−h+1, . . . , xt to
define equivalence classes or states. A length h sequence can
have h! different ordering patterns. As an example, for h = 3,
we can have 6 different possible patterns as shown in Fig. 1,
where “3” represents the location of the largest value and “1”
represents the location of the smallest value, e.g., the sequence
{xt−2, xt−1, xt} = {5,−2, 3} corresponds to the pattern or
ordering (3, 1, 2). Given h and this set of ordering patterns,
one can arbitrarily assign each pattern to a state so that
st ∈ {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}
for each t. After fixing the state assignments, st+1 is known
after observing xt+1.

For such a state definition, one can easily construct a
sequential algorithm asymptotically achieving the performance

of the optimal batch FS predictor such as [6]

ft(st) =

∑t−1
z=1 I

{st}
z dz∑t−1

z=1 I
{st}
z

, (1)

where I{st}z is the indicator function representing whether the
length-h sequence corresponds to state st.

Although (1) sequentially learns the optimal batch FS
predictor for each state based on the past occurrences of these
states, it can only provide satisfactory results if there are
enough occurrences of each state pattern in the past x1, . . . , xt.
However, for even moderate h that define meaningful patterns
in real life applications [7], say for h = 10, the number of
patterns grows as h! ≈ hh = 1010. In this sense, to train
(1) using ordering patterns, we require a substantial amount
of past observations, which is not available in most real life
applications even for stationary data. As described in the next
section, one can mitigate this problem by defining “super set”
equivalence classes or tying certain states together as widely
used in speech recognition applications when there are not
enough data to adequately train all the phoneme states [7].

III. A HIERARCHICAL ORDER PRESERVING PREDICTOR

Although a sequence of length h, (xt−h+1, . . . , xt), can
have h! different ordering patterns, most of these patterns
share similar characteristics that can be exploited to group (or
tie) them together to form different states each representing
a collection of these patterns. In this paper, we use the
appearance time of the elements as the main characteristics
in order to group the patterns in a nested manner. As example
in Fig. 2, for h = 3, we show how we hierarchically divide all
possible patterns into different groups or equivalence classes.
While we have the complete states at level i = h − 1, at
each level i < h − 1, we group each h − i ordering patterns
from level i+1 into one of the P (h, i) = h!/(h− i)! different
equivalence classes starting from the oldest sample to the most
recent one. As an example, at level-1, we combine the states
c2,5 = (1, 2, 3) and c2,6 = (2, 1, 3) into the equivalence class
c1,3 = (·, ·, 3) since the most recent element of both c2,5 and
c2,6 are the largest one among the pattern.

With this definition of new equivalence classes, we have a
smaller set of states and corresponding state predictors to train,
which can be carried out by using much less observations of
the data. Hence, at the beginning of the learning process, one
can use this super set as a coarser representation that can be
efficiently learned and then gradually switch to the original
whole model with better modelling power as the data length
increases. However, such super set definitions or switching
between state sets can significantly effect the performance
and their optimal selection are highly data dependent [3].
Furthermore, the effectiveness of the super sets or original
sets may change over time, i.e., if the underlying data is highly
nonstationary, then the whole model with all ordering patterns
may never have enough data to adequately train predictors
even if the data length increases to infinity. To this end, we
introduce a sequential algorithm that elegantly and effectively
performs such decisions by intrinsically implementing and

GlobalSIP14-Signal and Information Processing for Energy Exchange and Intelligent Trading

239



(.,.,1) 

Level - 2 Level - 1 Level - 0 

(.,.,.) (.,.,2) 

(.,.,3) 

(2,3,1) 

(3,2,1) 

(1,3,2) 

(3,1,2) 

(1,2,3) 

(2,1,3) 

,  

,  

,  

,  

,  

,  

,  

,  

,  

,  

Fig. 2: The tying configuration for the relative ordering patterns with h = 3,
where the equivalence classes at lower levels are formed by combining the
equivalence classes at higher levels.

combining a huge number of ordering pattern based FS
predictors.

A. A Universal Approach

We observe that various collections of the nodes in Fig.
2 completely covers all the original ordering patterns. As
an example, the equivalence classes {c1,1, c1,2, c1,3} and
{c1,1, c2,3, c2,4, c1,3}, completely covers the original set of
the patterns {c2,1, c2,2, c2,3, c2,4, c2,5, c2,6}. Hence, each of
these tying configurations can be used to construct a FS
predictor by using equivalence classes as states and using the
sequential method in (1) to produce prediction functions and
the final output. For the introduced super set equivalence class
definition with a history of length h, there are Kh ≈ 2h! ≈ 2h

h

different tying configurations (since Kh+1 = Kh+1
h +1), each

of which completely covers the entire pattern set.
Suppose we construct all the FS predictors d̂t,k, k =

1, . . . ,Kh and run them in parallel and predict dt. We then
combine the outputs of these FS predictors to produce a final
weighted output

d̂t =
K∑

k=1

µt,k d̂t,k, (2)

where the combination weights measure the relative perfor-
mance of each FS predictor on the past observations, i.e.,

µt,k =
exp

(
−a
∑t−1

z=1 l(dz, d̂z,k)
)

∑Kh

r=1 exp
(
−a
∑t−1

z=1 l(dz, d̂z,r)
) , (3)

and a is a positive constant controlling the learning rate by
normalizing the total sum.

It can be shown that the weighted mixture algorithm (2)
sequentially achieves the performance of the best algorithm
in the mixture, i.e., when applied to any x1, x2, . . . and
d1, d2, . . ., yields the performance

n∑
t=1

l(dt, d̂t) ≤ min
k=1,...,Kh

n∑
t=1

l(dt, d̂t,k) +O(logKh), (4)

for various loss functions [8], [9] such as the squared error
loss (dt− d̂t)2, for any n without knowing the optimal d̂t,k or
the data length n. Hence, this sequential algorithm is as good
as the any of the FS predictors that can be defined in Fig. 2.

However, in this form this algorithm cannot be implemented
since even for a decent length pattern such as h = 4, we need
to run Kh = 6562 FS predictors in parallel and monitor their
performances to construct (2), which is clearly not plausible.
In the next section, we introduce a method that implements
(2) with complexity only linear in the pattern length h.

B. Low Complexity Implementation of (2)

For an efficient implementation of (2), we first assign a
prediction function d̂(ci,j)t to each equivalence class ci,j . Each
equivalence class predictor is sequential and constructs its
output based on its past such as in (1). We then note that
although there are Kk FS predictors, a data sequence can only
be included in only one equivalence class in each level. As
an example, for the sequence (5,−2, 3), only the equivalence
classes (3, 1, 2), (·, ·, 2), and (·, ·, ·) includes this pattern.
Hence, although there are Kh different FS predictors, their
outputs, at any time t, can only be the output of h different
equivalence class predictors.

In order to use this observation, we first define a loss
function for each equivalence class predictor d̂(ci,j)t as follows

L
(ci,j)
t , exp

(
−a

t−1∑
z=1

l(dz, d̂
(ci,j)
z ) I(ci,j)z

)
. (5)

We also define a loss for the FS predictors, say for the k-th
one, as follows

Lt,k , exp

(
−a

t−1∑
z=1

l(dz, d̂z,k)

)
. (6)

Then using the observation, we conclude

Lt,k =
∏

ci,j∈Ck

L
(ci,j)
t , (7)

where Ck represents the set of all equivalence classes in the
k-th FS predictor.

According to these definitions, the remaining question
is to find an efficient scheme to calculate

∑Kh

k=1 Lt,k and∑Kh

k=1 Lt,kd̂t,k. To this end, for each equivalence class ci,j ,
we define another recursion parameter

R
(ci,j)
t , L

(ci,j)
t +

∏
ci+1,j′∈D

(ci,j)

R
(ci+1,j′ )
t , (8)

where D(ci,j) represents the descendants of the equiva-
lence class ci,j . As an example, for the equivalence class
c0,1, we have descendant equivalence classes D(c0,1) =
{c1,1, c1,2, c1,3}. As can be shown after some algebra, if
we expand the recursive formulation for R

(c0,1)
t , we get

R
(c0,1)
t =

∑Kh

k=1 Lt,k, which is equal to the denominator of
(3).
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Algorithm 1 Universal Order Preserving Forecasting

1: % Initialization: L{ci,j}0 ⇐ 1, calculate R{ci,j}0 , ∀ci,j .
2: for t = 1 to n do
3: % Find the current state st.
4: % Find the set of equivalence classes Et containing st.
5: % Calculate R̃(c0,1)

t , ∀ci,j ∈ Et
6: % Output d̂t ⇐ R̃

(c0,1)
t /R

(c0,1)
t .

7: % Observe dt and update d̂{ci,j}t as in (1), ∀ci,j ∈ Et.
8: L

(ci,j)
t+1 ⇐ L

(ci,j)
t exp

(
−a l(dt, d̂

(ci,j)
t )

)
, ∀ci,j ∈ Et

9: % Update R(ci,j)
t as in (8), ∀ci,j ∈ Et.

10: end for

The numerator of (2), i.e.,
∑Kh

k=1 Lt,kd̂t,k, can be obtained
using the recursion parameter (8) to define a new intermediate
parameter

R̃
(ci,j)
t , L

(ci,j)
t d̂

(ci,j)
t + R̃

(ci+1,m)
t

∏
ci+1,j′∈D

(ci,j)

ci+1,j′ 6=ci+1,m

R
(ci+1,j′ )
t ,

where ci+1,m represents the descendant of the equivalence
class ci,j containing the current pattern. Similar to (8), if
we expand the recursive formulation for R̃

(c0,1)
t , we get

R̃
(c0,1)
t =

∑Kh

k=1 Lt,kd̂t,k, which is equal to the numerator of
(2). Hence, we can calculate the final output in (2) by simply
d̂t = R

(c0,1)
t

/
R̃

(c0,1)
t , where the detailed description of the

algorithm can be found in Algorithm 1.

IV. REAL LIFE EXPERIMENTS

In this section, we illustrate the merits of the proposed
algorithm with real life examples under the squared error loss.
To this end, we consider the prediction of the energy profiles
of the actual consumers. Particularly, we forecast the energy
consumption of actual consumers using their past consumption
patterns, where the aim is to predict the consumption trend
such that dt = 1 if xt+1 ≥ xt and dt = −1, otherwise, i.e., we
try to forecast an increasing or decreasing trend in the energy
consumption patterns. In order to capture the convergence
behavior of the algorithms perfectly, we choose h = 4 for
this real life experiment.

In Figure 3, the accumulated squared error performances
(normalized with time) of the proposed algorithms are com-
pared, where “Univ” represents the universal predictor intro-
duced in this paper, “Fin” represents the finest predictor for
h = 4, i.e., the predictor using all equivalence classes at level-
3 (e.g., see level-2 in Fig. 2 for h = 3) as its states, “Coar”
represents the coarsest predictor, i.e., the predictor with only
one state, i.e., the one at level-0 (e.g., see level-0 in Fig. 2).

Owing to its universal formulation, the performance of the
“Univ” algorithm is comparable with the “Coar” algorithm
when there is not sufficient amount of data to train finer energy
consumption patterns (equivalence classes). However, as the
data length increases, the performance of the “Coar” algorithm
deteriorates with respect to the algorithms considering finer
equivalence classes such as the “Fin” algorithm. On the other
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Fig. 3: Normalized accumulated squared error performance of the proposed
algorithms.

hand, the performance of the “Univ” algorithm is still as
well as the “Fin” algorithm even after a significant amount
of observations.

We emphasize that as the pattern order h increases or when
the underlying data is highly nonstationary, the convergence
performance of the “Univ” algorithm will significantly out-
perform the performance of the “Fin” algorithm since the
“Fin” algorithm may not be able to observe enough training
sequences to achieve a satisfactory performance. This result is
also apparent in Figure 3, where over short data sequences the
performance of the “Fin” algorithm is worse compared to the
“Univ” and “Coar” algorithms. Hence, the universal algorithm
outperforms the constituent FS predictors by exploiting the
time-dependent nature of the best choice among constituent
FS predictors that are defined on the hierarchical structure.

V. CONCLUDING REMARKS

In this paper, we study sequential prediction of energy usage
data of consumers, where we use the relative ordering patterns
of the energy consumption history to construct states. Instead
of directly using the relative ordering patterns of the energy
consumption history, which can result a undesirably large
number of states for even moderate length patterns, we define
hierarchical equivalence classes by recursively tying certain
patterns to avoid over training problems. With this equivalence
class definitions, we construct a huge number of FS predictors,
one of which is optimal for the underlying task. By introducing
such a low complexity universal algorithm, we show that we
can sequentially achieve the performance of the best sequential
FS predictor out of 2h

h

possible FS predictors defined by this
hierarchical structure, with computational complexity only lin-
ear in the length of the pattern h. Our results are generic such
that they can be directly used for a wide range of hierarchical
equivalence class definitions and hold for a wide range of loss
functions [10]. Furthermore, we analyze the performance of
our algorithm using a real life energy consumption data of the
actual consumers and illustrate that the introduced algorithm
can be efficiently used in the forecasting (or prediction) of
energy profiling, modelling, and price management scenarios.
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